|   | 
Details
   web
Records
Author (up) Alvarado, F.; An, D.; Alvarez-Ruso, L.; Leupold, S.
Title Light quark mass dependence of nucleon electromagnetic form factors in dispersively modified chiral perturbation theory Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue 11 Pages 114021 - 23pp
Keywords
Abstract The nucleon isovector electromagnetic form factors are calculated up to next-to-next-to-leading order by combining relativistic chiral perturbation theory (ChPT) of pion, nucleon, and Delta o1232 thorn with dispersion theory. We specifically address the light-quark mass dependence of the form factors, achieving a good description of recent lattice QCD results over a range of Q2 less than or similar to 0.6 GeV2 and M pi less than or similar to 350 MeV. For the Dirac form factor, the combination of ChPT and dispersion theory outperforms the pure dispersive and pure ChPT descriptions. For the Pauli form factor, the combined calculation leads to results comparable to the purely dispersive ones. The anomalous magnetic moment and the Dirac and Pauli radii are extracted.
Address [Alvarado, Fernando; Alvarez-Ruso, Luis] CSIC, Inst Fis Corpuscular IF, E-46980 Paterna, Valencia, Spain, Email: Fernando.Alvarado@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001138524400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5906
Permanent link to this record
 

 
Author (up) Husek, T.; Leupold, S.
Title Radiative corrections for the decay Sigma(0) -> Lambda e(+)e(-) Type Journal Article
Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 80 Issue 3 Pages 218 - 24pp
Keywords
Abstract Electromagnetic form factors serve to explore the intrinsic structure of nucleons and their strangeness partners. With electron scattering at low energies the electromagnetic moments and radii of nucleons can be deduced. The corresponding experiments for hyperons are limited because of the unstable nature of the hyperons. Only for one process this turns to an advantage: the decay of the neutral Sigma hyperon to a Lambda hyperon and a real or virtual photon. Due to limited phase space the effects caused by the Sigma-to-Lambda transition form factors compete with the QED radiative corrections for the decay sigma 0 -> e+e-. These QED corrections are addressed in the present work, evaluated beyond the soft-photon approximation, i.e., over the whole range of the Dalitz plot and with no restrictions on the energy of the radiative photon.
Address [Husek, Tomas] Univ Valencia, IFIC, CSIC, Apt Correus 22085, Valencia 46071, Spain, Email: thusek@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000519253000007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4329
Permanent link to this record