|   | 
Details
   web
Records
Author (up) Albaladejo, M.; Fernandez-Soler, P.; Guo, F.K.; Nieves, J.
Title Two-pole structure of the D-0*(2400) Type Journal Article
Year 2017 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 767 Issue Pages 465-469
Keywords
Abstract The so far only known charmed non-strange scalar meson is dubbed as D-0(*)(2400) in the Review of Particle Physics. We show, within the framework of unitarized chiral perturbation theory, that there are in fact two (I = 1/2, J(P) = 0(+)) poles in the region of the D-0(*)( 2400) in the coupled-channel D pi, D eta and D-s (K) over bar scattering amplitudes. With all the parameters previously fixed, we predict the energy levels for the coupled-channel system in a finite volume, and find that they agree remarkably well with recent lattice QCD calculations. This successful description of the lattice data is regarded as a strong evidence for the two-pole structure of the D-0(*)( 2400). With the physical quark masses, the poles are located at (2105(-8)(+6) – i102(-12)(+10)) MeV and (2451(-26)(+36) – i134(-8)(+7)) MeV, with the largest couplings to the D pi and D-s (K) over bar channels, respectively. Since the higher pole is close to the D-s (K) over bar threshold, we expect it to show up as a threshold enhancement in the D-s (K) over bar invariant mass distribution. This could be checked by high-statistic data in future experiments. We also show that the lower pole belongs to the same SU(3) multiplet as the D-s0(*)(2317) state. Predictions for partners in the bottom sector are also given.
Address [Albaladejo, Miguel; Fernandez-Soler, Pedro; Nieves, Juan] Univ Valencia, Ctr Mixto CSIC, Inst Invest Paterna, Inst Fis Corpuscular IFIC, Aptd 22085, E-46071 Valencia, Spain, Email: albaladejo@um.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000397861700070 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3025
Permanent link to this record
 

 
Author (up) Albaladejo, M.; Guo, F.K.; Hanhart, C.; Meissner, U.G.; Nieves, J.; Nogga, A.; Yang, Z.
Title Note on X(3872) production at hadron colliders and its molecular structure Type Journal Article
Year 2017 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C
Volume 41 Issue 12 Pages 121001 - 3pp
Keywords X(3872); hadronic molecules; exotic hadrons
Abstract The production of the X (3872) as a hadronic molecule in hadron colliders is clarified. We show that the conclusion of Bignamini et al., Phys. Rev. Lett. 103 (2009) 162001, that the production of the X(3872) at high pT implies a non-molecular structure, does not hold. In particular, using the well understood properties of the deuteron wave function as an example, we identify the relevant scales in the production process.
Address [Albaladejo, Miguel] Univ Murcia, Dept Fis, E-30071 Murcia, Spain
Corporate Author Thesis
Publisher Chinese Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-1137 ISBN Medium
Area Expedition Conference
Notes WOS:000417112000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3397
Permanent link to this record
 

 
Author (up) Albaladejo, M.; Guo, F.K.; Hidalgo-Duque, C.; Nieves, J.
Title Z(c)(3900): What has been really seen? Type Journal Article
Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 755 Issue Pages 337-342
Keywords
Abstract The Z(c)(+/-)(3900)/Z(c)(+/-)(3885) resonant structure has been experimentally observed in the Y(4260) -> J/Psi pi pi and Y(4260) -> (D) over bar* D pi decays. This structure is intriguing since it is a prominent candidate of an exotic hadron. Yet, its nature is unclear so far. In this work, we simultaneously describe the (D) over bar* D and J/Psi pi invariant mass distributions in which the Z(c) peak is seen using amplitudes with exact unitarity. Two different scenarios are statistically acceptable, where the origin of the Z(c) state is different. They correspond to using energy dependent or independent (D) over bar *D S-wave interaction. In the first one, the Z(c) peak is due to a resonance with a mass around the D (D) over bar* threshold. In the second one, the Z(c) peak is produced by a virtual state which must have a hadronic molecular nature. In both cases the two observations, Z(c)(+/-)(3900) and Z(c)(+/-)(3885), are shown to have the same common origin, and a (D) over bar *D bound state solution is not allowed. Precise measurements of the line shapes around the D (D) over bar* threshold are called for in order to understand the nature of this state.
Address [Albaladejo, Miguel; Hidalgo-Duque, Carlos; Nieves, Juan] Ctr Mixto CSIC Univ Valencia, Inst Invest Paterna, Inst Fis Corpuscular, Aptd 22085, E-46071 Valencia, Spain, Email: Miguel.Albaladejo@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000373568100047 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2711
Permanent link to this record
 

 
Author (up) Albaladejo, M.; Guo, F.K.; Hidalgo-Duque, C.; Nieves, J.; Pavon Valderrama, M.
Title Decay widths of the spin-2 partners of the X(3872) Type Journal Article
Year 2015 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 75 Issue 11 Pages 547 - 26pp
Keywords
Abstract We consider the X(3872) resonance as a J(PC) = 1(++) D (D) over bar* hadronic molecule. According to heavy quark spin symmetry, there will exist a partner with quantum numbers 2(++), X-2, which would be a D*(D) over bar* loosely bound state. The X-2 is expected to decay dominantly into D (D) over bar, D (D) over bar* and (D) over barD* in d-wave. In this work, we calculate the decay widths of the X-2 resonance into the above channels, as well as those of its bottom partner, X-b2, the mass of which comes from assuming heavy flavor symmetry for the contact terms. We find partial widths of the X-2 and X-b2 of the order of a few MeV. Finally, we also study the radiative X-2 -> D (D) over bar*gamma. and X-b2 -> (B) over bar B*gamma decays. These decay modes are more sensitive to the long-distance structure of the resonances and to the D (D) over bar* or B (B) over bar* final state interaction.
Address [Albaladejo, Miguel; Hidalgo-Duque, Carlos; Nieves, Juan] Univ Valencia, Inst Invest Paterna, Ctr Mixto CSIC, Inst Fis Corpuscular IFIC, Valencia 46071, Spain, Email: Miguel.Albaladejo@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000365886000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2487
Permanent link to this record
 

 
Author (up) Baru, V.; Dong, X.K.; Du, M.L.; Filin, A.; Guo, F.K.; Hanhart, C.; Nefediev, A.; Nieves, J.; Wang, Q.
Title Effective range expansion for narrow near-threshold resonances Type Journal Article
Year 2022 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 833 Issue Pages 137290 - 7pp
Keywords Effective range expansion; Exotic states; Tetraquarks; Hadronic molecules
Abstract We discuss some general features of the effective range expansion, the content of its parameters with respect to the nature of the pertinent near-threshold states and the necessary modifications in the presence of coupled channels, isospin violations and unstable constituents. As illustrative examples, we analyse the properties of the chi(c1)(3872) and T-cc(+) states supporting the claim that these exotic states have a predominantly molecular nature.
Address [Baru, Vadim; Filin, Arseniy] Ruhr Univ Bochum, Inst Theoret Phys 2, D-44780 Bochum, Germany, Email: vadimb@tp2.rub.de
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000837882700019 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5327
Permanent link to this record
 

 
Author (up) Bayar, M.; Aceti, F.; Guo, F.K.; Oset, E.
Title Discussion on triangle singularities in the Lambda(b) -> J/psi K(-)p reaction Type Journal Article
Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 94 Issue 7 Pages 074039 - 10pp
Keywords
Abstract We have analyzed the singularities of a triangle loop integral in detail and derived a formula for an easy evaluation of the triangle singularity on the physical boundary. It is applied to the Lambda(b) -> J/psi K(-)p process via Lambda*-charmonium-proton intermediate states. Although the evaluation of absolute rates is not possible, we identify the chi(c1) and the psi(2S)as the relatively most relevant states among all possible charmonia up to the psi(2S). The Lambda(1890)chi(c1)p loop is very special, as its normal threshold and triangle singularities merge at about 4.45 GeV, generating a narrow and prominent peak in the amplitude in the case that the chi(c1)p is in an S wave. We also see that loops with the same charmonium and other Lambda* hyperons produce less dramatic peaks from the threshold singularity alone. For the case of chi(c1)p -> J/psi p and quantum numbers 3/2(-) or 5/2(+), one needs P and D waves, respectively, in the chi(c1)p, which drastically reduce the strength of the contribution and smooth the threshold peak. In this case, we conclude that the singularities cannot account for the observed narrow peak. In the case of 1/2(+), 3/2(-) quantum numbers, where chi(c1)p -> J/psi p can proceed in an S wave, the Lambda(1890)chi(c1)p triangle diagram could play an important role, though neither can assert their strength without further input from experiments and lattice QCD calculations.
Address [Bayar, Melahat] Kocaeli Univ, Dept Phys, TR-41380 Izmit, Turkey
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000387256100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2854
Permanent link to this record
 

 
Author (up) Du, M.L.; Albaladejo, M.; Fernandez-Soler, P.; Guo, F.K.; Hanhart, C.; Meissner, U.G.; Nieves, J.; Yao, D.L.
Title Towards a new paradigm for heavy-light meson spectroscopy Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 98 Issue 9 Pages 094018 - 8pp
Keywords
Abstract Since 2003 many new hadrons, including the lowest-lying positive-parity charm-strange mesons D*(s0) (2317) and D-s1 (2460), have been observed that do not conform with quark-model expectations. It was recently demonstrated that various puzzles in the charm-meson spectrum find a natural resolution if the SU(3) multiplets for the lightest scalar and axial-vector states, among them the D*(s0) (2317) and the D-s1 (2460), owe their existence to the nonperturbative dynamics of Goldstone-boson scattering off D-(s) and D*((s)) mesons. Most importantly the ordering of the lightest strange and nonstrange scalars becomes natural. We demonstrate for the first time that this mechanism is strongly supported by the recent high quality data on the B- -> D+ pi(-)pi(-) provided by the LHCb experiment. This implies that the lowest quark-model positive-parity charm mesons, together with their bottom counterparts, if realized in nature, do not form the ground-state multiplet. This is similar to the pattern that has been established for the scalar mesons made from light up, down, and strange quarks, where the lowest multiplet is considered to be made of states not described by the quark model. In a broader view, the hadron spectrum must be viewed as more than a collection of quark-model states.
Address [Du, Meng-Lin; Meissner, Ulf-G.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany, Email: fkguo@itp.ac.cn
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000451000200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3817
Permanent link to this record
 

 
Author (up) Du, M.L.; Albaladejo, M.; Guo, F.K.; Nieves, J.
Title Combined analysis of the Z(c)(3900) and the Z(cs)(3985) exotic states Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue 7 Pages 074018 - 20pp
Keywords
Abstract We have performed a combined analysis of the BESIII data for both the Z(c)(3900) and Z(cs)(3985) structures, assuming that the latter is an SU(3) flavor partner of the former one. We have improved on the previous analysis of Albaladejo et al. [Phys. Lett. B 755, 337 (2016)] by computing the amplitude for the D-1(D) over barD* triangle diagram considering both D- and S-wave D1D*x couplings. We have also investigated effects from SU(3) light-flavor violations, which are found to be moderate and of the order of 20%. The successful reproduction of the BESIII spectra, in both the hidden-charm and hidden-charm strange sectors, strongly supports that the Z(cs)(3985) and Z(c)(3900) are SU(3) flavor partners placed in the same octet multiplet. The best results are obtained when an energy-dependent term in the diagonal D(*) (D) over bar ((s))((*)) interaction is included, leading to resonances (poles above the thresholds) to describe these exotic states. We have also made predictions for the isovector Z*c and isodoublet Z*(cs), D*(D) over bar*, and D*??D*s molecules, with J(PC) = 1(+-) and J(P) = 1(+), respectively. These states would be heavy-quark spin symmetry (HQSS) partners of the Z(c) and Z(cs). Besides the determination of the masses and widths of the Z(c)(3900) and Z(cs)(3985), we also predict those of the Z*(c) and Z*(cs) resonances.
Address [Du, Meng-Lin; Albaladejo, Miguel; Nieves, Juan] UV, CSIC, Ctr Mixto, Inst Invest Paterna,Inst Fis Corpuscular, Apartado 22085, Valencia 46071, Spain, Email: du.menglin@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000809663000012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5259
Permanent link to this record
 

 
Author (up) Du, M.L.; Baru, V.; Dong, X.K.; Filin, A.; Guo, F.K.; Hanhart, C.; Nefediev, A.; Nieves, J.; Wang, Q.
Title Coupled-channel approach to T-cc(+) including three-body effects Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue 1 Pages 014024 - 19pp
Keywords
Abstract A coupled-channel approach is applied to the charged tetraquark state T-cc(+). recently discovered by the LHCb Collaboration. The parameters of the interaction are fixed by a fit to the observed line shape in the three-body (DD0)-D-0 pi(+) channel. Special attention is paid to the three-body dynamics in the T-cc(+) due to the finite life time of the D*. An approach to the T-cc(+) is argued to be self-consistent only if both manifestations of the three-body dynamics, the pion exchange between the D and D* mesons and the finite D* width, are taken into account simultaneously to ensure that three-body unitarity is preserved. This is especially important to precisely extract the pole position in the complex energy plane whose imaginary part is very sensitive to the details of the coupled-channel scheme employed. The (DD0)-D-0 and (DD+)-D-0 invariant mass distributions, predicted based on this analysis, are in good agreement with the LHCb data. The low-energy expansion of the D* D scattering amplitude is performed and the low-energy constants (the scattering length and effective range) are extracted. The compositeness parameter of the T-cc(+) is found to be close to unity, which implies that the T-cc(+) is a hadronic molecule generated by the interactions in the D*D-+(0) and D*D-0(+) channels. Employing heavy-quark spin symmetry, an isoscalar D* D* molecular partner of the T-cc(+) with J(P) = 1(+ )is predicted under the assumption that the DD* -D* D* coupled-channel effects can be neglected.
Address [Du, Meng-Lin; Nieves, Juan] Ctr Mixto CSIC UV, Inst Fis Corpuscular, Inst Invest Paterna, Apartado 22085, Valencia 46071, Spain, Email: du.menglin@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000747425300003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5096
Permanent link to this record
 

 
Author (up) Du, M.L.; Baru, V.; Guo, F.K.; Hanhart, C.; Meissner, U.G.; Oller, J.A.; Wang, Q.
Title Revisiting the nature of the P-c pentaquarks Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 157 - 50pp
Keywords QCD Phenomenology; Non-perturbative renormalization
Abstract The nature of the three narrow hidden-charm pentaquark P-c states, i.e., P-c (4312), P-c (4440) and P-c (4457), is under intense discussion since their discovery from the updated analysis of the process Lambda(0)(b) -> I ) J/psi pK(-) by LHCb. In this work we extend our previous coupled-channel approach [Phys. Rev. Lett. 124, 072001 (2020)], in which the Pc states are treated as Sigma(()(c)*()) (D) over bar (()*()) molecules, by including the Lambda(c)(D) over bar (()*()) and eta(c)p as explicit inelastic channels in addition to the J/psi p, as required by unitarity and heavy quark spin symmetry (HQSS), respectively. Since inelastic parameters are very badly constrained by the current data, three calculation schemes are considered: (a) scheme I with pure contact interactions between the elastic, i.e., Sigma(()(c)*()) (D) over bar (()*()), and inelastic channels and without the Lambda(c)(D) over bar (()*()) interactions, (b) scheme II, where the one-pion exchange (OPE) is added to scheme I, and (c) scheme III, where the Lambda(c)(D) over bar (()*()) interactions are included in addition. It is shown that to obtain cutoff independent results, OPE in the multichannel system is to be supplemented with S-wave-to-D-wave mixing contact terms. As a result, in line with our previous analysis, we demonstrate that the experimental data for the J/psi p invariant mass distribution are consistent with the interpretation of the P-c(4312) and P-c(4440)/P-c(4457) as Sigma(c)(D) over bar and Sigma(c)(D) over bar* hadronic molecules, respectively, and that the data show clear evidence for a new narrow state, P-c(4380), identified as a Sigma(c)*(D) over bar molecule, which should exist as a consequence of HQSS. While two statistically equally good solutions are found in scheme I, only one of these solutions with the quantum numbers of the P-c (4440) and P-c (4457) being J(P) = 3/2(-) and 1/2(-), respectively, survives the requirement of regulator independence once the OPE is included. Moreover, we predict the line shapes in the elastic and inelastic channels and demonstrate that those related to the P-c (4440) and the P-c (4457) in the Sigma(()(c)*())<(D)over ( )anf eta(c)p mass distributions from Lambda(0)(b) ->( )Sigma(()(c)*()) (D) over barK(-) and Lambda(0)(b) -> eta(c)pK(-) will shed light on the quantum numbers of those states, once the data are available. We also investigate possible pentaquark signals in the Lambda(c)(D) over bar (()*()) final states.
Address [Du, Meng-Lin; Meissner, Ulf-G.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany, Email: du@hiskp.uni-bonn.de
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000693090600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4958
Permanent link to this record