|   | 
Details
   web
Records
Author (up) Aguilera-Verdugo, J.D.; Driencourt-Mangin, F.; Hernandez-Pinto, R.J.; Plenter, J.; Prisco, R.M.; Ramirez-Uribe, N.S.; Renteria-Olivo, A.E.; Rodrigo, G.; Sborlini, G.F.R.; Torres Bobadilla, W.J.; Tramontano, F.
Title A Stroll through the Loop-Tree Duality Type Journal Article
Year 2021 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel
Volume 13 Issue 6 Pages 1029 - 37pp
Keywords Feynman integrals; multi-loop calculations; perturbative QFT; higher orders
Abstract The Loop-Tree Duality (LTD) theorem is an innovative technique to deal with multi-loop scattering amplitudes, leading to integrand-level representations over a Euclidean space. In this article, we review the last developments concerning this framework, focusing on the manifestly causal representation of multi-loop Feynman integrals and scattering amplitudes, and the definition of dual local counter-terms to cancel infrared singularities.
Address [de Jesus Aguilera-Verdugo, Jose; Driencourt-Mangin, Felix; Plenter, Judith; Selomit Ramirez-Uribe, Norma; Ernesto Renteria-Olivo, Andres; Rodrigo, German; Sborlini, German] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient, E-46980 Paterna, Spain, Email: jesus.aguilera@ific.uv.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000666742200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4889
Permanent link to this record
 

 
Author (up) Aguilera-Verdugo, J.J.; Driencourt-Mangin, F.; Hernandez-Pinto, R.J.; Plenter, J.; Ramirez-Uribe, S.; Renteria-Olivo, A.E.; Rodrigo, G.; Sborlini, G.F.R.; Torres Bobadilla, W.J.; Tracz, S.
Title Open Loop Amplitudes and Causality to All Orders and Powers from the Loop-Tree Duality Type Journal Article
Year 2020 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 124 Issue 21 Pages 211602 - 6pp
Keywords
Abstract Multiloop scattering amplitudes describing the quantum fluctuations at high-energy scattering processes are the main bottleneck in perturbative quantum field theory. The loop-tree duality is a novel method aimed at overcoming this bottleneck by opening the loop amplitudes into trees and combining them at integrand level with the real-emission matrix elements. In this Letter, we generalize the loop-tree duality to all orders in the perturbative expansion by using the complex Lorentz-covariant prescription of the original one-loop formulation. We introduce a series of mutiloop topologies with arbitrary internal configurations and derive very compact and factorizable expressions of their open-to-trees representation in the loop-tree duality formalism. Furthermore, these expressions are entirely independent at integrand level of the initial assignments of momentum flows in the Feynman representation and remarkably free of noncausal singularities. These properties, that we conjecture to hold to other topologies at all orders, provide integrand representations of scattering amplitudes that exhibit manifest causal singular structures and better numerical stability than in other representations.
Address [Jesus Aguilera-Verdugo, J.; Driencourt-Mangin, Felix; Plenter, Judith; Ramirez-Uribe, Selomit; Renteria-Olivo, Andres E.; Rodrigo, German; Sborlini, German F. R.; Torres Bobadilla, William J.; Tracz, Szymon] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient, E-46980 Valencia, Spain, Email: jesus.aguilera@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000535862200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4404
Permanent link to this record
 

 
Author (up) Aguilera-Verdugo, J.J.; Driencourt-Mangin, F.; Plenter, J.; Ramirez-Uribe, S.; Rodrigo, G.; Sborlini, G.F.R.; Torres Bobadilla, W.J.; Tracz, S.
Title Causality, unitarity thresholds, anomalous thresholds and infrared singularities from the loop-tree duality at higher orders Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 163 - 12pp
Keywords Duality in Gauge Field Theories; Perturbative QCD; Scattering Amplitudes
Abstract We present the first comprehensive analysis of the unitarity thresholds and anomalous thresholds of scattering amplitudes at two loops and beyond based on the loop- tree duality, and show how non-causal unphysical thresholds are locally cancelled in an efficient way when the forest of all the dual on-shell cuts is considered as one. We also prove that soft and collinear singularities at two loops and beyond are restricted to a compact region of the loop three-momenta, which is a necessary condition for implementing a local cancellation of loop infrared singularities with the ones appearing in real emission; without relying on a subtraction formalism.
Address [Aguilera-Verdugo, J. Jesus; Driencourt-Mangin, Felix; Plenter, Judith; Ramirez-Uribe, Selomit; Rodrigo, German; Sborlini, German F. R.; Torres Bobadilla, William J.; Tracz, Szymon] Univ Valencia, Consejo Super Invest Cient, Inst Fis Corpuscular, Parc Cient, E-46980 Valencia, Spain, Email: jesus.aguilera@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000513535500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4288
Permanent link to this record
 

 
Author (up) Driencourt-Mangin, F.; Rodrigo, G.; Sborlini, G.F.R.
Title Universal dual amplitudes and asymptotic expansions for gg -> H and H -> gamma gamma in four dimensions Type Journal Article
Year 2018 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 78 Issue 3 Pages 231 - 7pp
Keywords
Abstract Though the one-loop amplitudes of the Higgs boson to massless gauge bosons are finite because there is no direct interaction at tree level in the Standard Model, a well-defined regularization scheme is still required for their correct evaluation. We reanalyze these amplitudes in the framework of the four-dimensional unsubtraction and the loop-tree duality (EDU/LTD), and show how a local renormalization solves potential regularization ambiguities. The Higgs boson interactions are also used to illustrate new additional advantages of this formalism. We show that LTD naturally leads to very compact integrand expressions in four space-time dimensions of the one-loop amplitude with virtual electroweak gauge bosons. They exhibit the same functional form as the amplitudes with top quarks and charged scalars, thus opening further possibilities for simplifications in higher-order computations. Another outstanding application is the straightforward implementation of asymptotic expansions by using dual amplitudes. One of the main benefits of the LTD representation is that it is supported in a Euclidean space. This characteristic feature naturally leads to simpler asymptotic expansions.
Address [Driencourt-Mangin, Felix; Rodrigo, German; Sborlini, German E. R.] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient, Valencia 46980, Spain, Email: felix.dm@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000427624100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3525
Permanent link to this record
 

 
Author (up) Driencourt-Mangin, F.; Rodrigo, G.; Sborlini, G.F.R.; Torres Bobadilla, W.J.
Title Interplay between the loop-tree duality and helicity amplitudes Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue 1 Pages 016012 - 13pp
Keywords
Abstract The spinor-helicity formalism has proven to be very efficient in the calculation of scattering amplitudes in quantum field theory, while the loop-tree duality (LTD) representation of multiloop integrals exhibits appealing and interesting advantages with respect to other approaches. In view of the most recent developments in LTD, we exploit the synergies with the spinor-helicity formalism to analyze illustrative one- and two-loop scattering processes. We focus our discussion on the local UV renormalization of IR and UV finite helicity amplitudes and present a fully automated numerical implementation that provides efficient expressions, which are integrable directly in four space-time dimensions.
Address [Driencourt-Mangin, F.; Rodrigo, G.; Sborlini, G. F. R.; Torres Bobadilla, W. J.] Univ Valencia, Consejo Super Invest Cient, Inst Fis Corpuscular, Parc Cientif, E-46980 Valencia, Spain, Email: felix.dm@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000748867800009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5100
Permanent link to this record
 

 
Author (up) Driencourt-Mangin, F.; Rodrigo, G.; Sborlini, G.F.R.; Torres Bobadilla, W.J.
Title Universal four-dimensional representation of H -> gamma gamma at two loops through the Loop-Tree Duality Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 143 - 39pp
Keywords Scattering Amplitudes; Higgs Physics; Perturbative QCD
Abstract We extend useful properties of the H unintegrated dual amplitudes from one- to two-loop level, using the Loop-Tree Duality formalism. In particular, we show that the universality of the functional form regardless of the nature of the internal particle still holds at this order. We also present an algorithmic way to renormalise two-loop amplitudes, by locally cancelling the ultraviolet singularities at integrand level, thus allowing a full four-dimensional numerical implementation of the method. Our results are compared with analytic expressions already available in the literature, finding a perfect numerical agreement. The success of this computation plays a crucial role for the development of a fully local four-dimensional framework to compute physical observables at Next-to-Next-to Leading order and beyond.
Address [Driencourt-Mangin, Felix; Rodrigo, German; Sborlini, German F. R.; Bobadilla, William J. Torres] Univ Valencia, CSIC, IFIC, Apt Correus 22085, E-46071 Valencia, Spain, Email: felix.dm@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000459485300005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3922
Permanent link to this record
 

 
Author (up) Gnendiger, C.; Signer, A.; Stockinger, D.; Broggio, A.; Cherchiglia, A.L.; Driencourt-Mangin, F.; Fazio, A.R.; Hiller, B.; Mastrolia, P.; Peraro, T.; Pittau, R.; Pruna, G.M.; Rodrigo, G.; Sampaio, M.; Sborlini, G.F.R.; Torres Bobadilla, W.J.; Tramontano, F.; Ulrich, Y.; Visconti, A.
Title To d, or not to d: recent developments and comparisons of regularization schemes Type Journal Article
Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 77 Issue 7 Pages 471 - 39pp
Keywords
Abstract We give an introduction to several regularization schemes that deal with ultraviolet and infrared singularities appearing in higher-order computations in quantum field theories. Comparing the computation of simple quantities in the various schemes, we point out similarities and differences between them.
Address [Gnendiger, C.; Signer, A.; Pruna, G. M.; Ulrich, Y.; Visconti, A.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland, Email: Christoph.Gnendiger@psi.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000405609700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3207
Permanent link to this record
 

 
Author (up) Sborlini, G.F.R.; Driencourt-Mangin, F.; Hernandez-Pinto, R.J.; Rodrigo, G.
Title Four-dimensional unsubtraction from the loop-tree duality Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 160 - 42pp
Keywords NLO Computations
Abstract We present a new algorithm to construct a purely four dimensional representation of higher-order perturbative corrections to physical cross-sections at next-to-leading order (NLO). The algorithm is based on the loop-tree duality (LTD), and it is implemented by introducing a suitable mapping between the external and loop momenta of the virtual scattering amplitudes, and the external momenta of the real emission corrections. In this way, the sum over degenerate infrared states is performed at integrand level and the cancellation of infrared divergences occurs locally without introducing subtraction counter-terms to deal with soft and final-state collinear singularities. The dual representation of ultraviolet counter-terms is also discussed in detail, in particular for self-energy contributions. The method is first illustrated with the scalar three-point function, before proceeding with the calculation of the physical cross-section for gamma* -> q (q) over bar (g), and its generalisation to multi-leg processes. The extension to next-to-next-to-leading order (NNLO) is briefly commented.
Address [Sborlini, German F. R.; Driencourt-Mangin, Felix; Hernandez-Pinto, Roger J.; Rodrigo, German] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient, E-46980 Valencia, Spain, Email: gfsborlini@df.uba.ar;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000382685100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2793
Permanent link to this record
 

 
Author (up) Sborlini, G.F.R.; Driencourt-Mangin, F.; Rodrigo, G.
Title Four-dimensional unsubtraction with massive particles Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 162 - 34pp
Keywords NLO Computations
Abstract We extend the four-dimensional unsubtraction method, which is based on the loop-tree duality (LTD), to deal with processes involving heavy particles. The method allows to perform the summation over degenerate IR configurations directly at integrand level in such a way that NLO corrections can be implemented directly in four space-time dimensions. We define a general momentum mapping between the real and virtual kinematics that accounts properly for the quasi-collinear configurations, and leads to an smooth massless limit. We illustrate the method first with a scalar toy example, and then analyse the case of the decay of a scalar or vector boson into a pair of massive quarks. The results presented in this paper are suitable for the application of the method to any multipartonic process.
Address [Sborlini, German F. R.; Driencourt-Mangin, Felix; Rodrigo, German] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient, E-46980 Valencia, Spain, Email: german.sborlini@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000387374000001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2853
Permanent link to this record
 

 
Author (up) Torres Bobadilla, W.J. et al; Driencourt-Mangin, F.; Rodrigo, G.
Title May the four be with you: novel IR-subtraction methods to tackle NNLO calculations Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 3 Pages 250 - 61pp
Keywords
Abstract In this manuscript, we report the outcome of the topical workshop: paving the way to alternative NNLO strategies (https://indico.ific.uv.es/e/WorkStop-ThinkStart_3.0), by presenting a discussion about different frameworks to perform precise higher-order computations for high-energy physics. These approaches implement novel strategies to deal with infrared and ultraviolet singularities in quantum field theories. A special emphasis is devoted to the local cancellation of these singularities, which can enhance the efficiency of computations and lead to discover novel mathematical properties in quantum field theories.
Address [Torres Bobadilla, W. J.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany, Email: torres@mpp.mpg.de
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000631882200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4788
Permanent link to this record