toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Volume III DUNE far detector technical coordination Type Journal Article
  Year 2020 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 15 Issue 8 Pages T08009 - 193pp  
  Keywords  
  Abstract The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module.  
  Address [Abi, B.; Azfar, F.; Barr, G.; Kabirnezhad, M.; Reynolds, A.; Rodrigues, P.; Spagliardi, F.; Weber, A.] Univ Oxford, Oxford OX1 3RH, England  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area (up) Expedition Conference  
  Notes WOS:000635160500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4786  
Permanent link to this record
 

 
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Prospects for beyond the Standard Model physics searches at the Deep Underground Neutrino Experiment DUNE Collaboration Type Journal Article
  Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 81 Issue 4 Pages 322 - 51pp  
  Keywords  
  Abstract The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE's sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach.  
  Address [Decowski, M. P.; De Jong, P.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: lkoerner@central.uh.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area (up) Expedition Conference  
  Notes WOS:000641453500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4809  
Permanent link to this record
 

 
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Supernova neutrino burst detection with the Deep Underground Neutrino Experiment Type Journal Article
  Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 81 Issue 5 Pages 423 - 26pp  
  Keywords  
  Abstract The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE's ability to constrain the nu(e) spectral parameters of the neutrino burst will be considered.  
  Address [Andreopoulos, C.; Decowski, M. P.; De Jong, P.; Filthaut, F.; Miedema, T.; Weber, A.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: kate.scholberg@duke.edu  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area (up) Expedition Conference  
  Notes WOS:000661101700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4859  
Permanent link to this record
 

 
Author T2K Collaboration (Abe, K. et al); Antonova, M.; Cervera-Villanueva, A.; Novella, P. url  doi
openurl 
  Title Measurements of (nu)over-bar(mu) and (nu)over-bar(mu) + nu(mu) charged-current cross-sections without detected pions or protons on water and hydrocarbon at a mean anti-neutrino energy of 0.86 GeV Type Journal Article
  Year 2021 Publication Progress of Theoretical and Experimental Physics Abbreviated Journal Prog. Theor. Exp. Phys.  
  Volume 2021 Issue 4 Pages 043C01 - 28pp  
  Keywords  
  Abstract We report measurements of the flux-integrated (nu) over bar (mu) and (nu) over bar (mu) + nu(mu) charged-current cross -sections on water and hydrocarbon targets using the T2K anti-neutrino beam with a mean beam energy of 0.86 GeV. The signal is defined as the (anti -)neutrino charged-current interaction with one induced mu(+/-) and no detected charged pion or proton. These measurements are performed using a new WAGASCI module recently added to the T2K setup in combination with the INGRID Proton Module. The phase space of muons is restricted to the high-detection efficiency region, p(mu) > 400 MeV/c and theta(mu) < 30 degrees, in the laboratory frame. An absence of pions and protons in the detectable phase spaces of p(pi) > 200 MeV/c, theta(pi) < 70 degrees and p(p) > 600 MeV/c, theta(p) < 70 degrees is required. In this paper, both the <(nu)over bar>(mu), cross-sections and (nu) over bar (mu) + nu(mu), cross-sections on water and hydrocarbon targets and their ratios are provided by using the D'Agostini unfolding method. The results of the integrated (nu) over bar (mu), cross-section measurements over this phase space are sigma(H2O) = (1.082 +/- 0.068(stat.)(+0.145)(-0.128)(syst.)) x 10(-39) cm(2)/nucleon, sigma(CH) = (1.096 +/- 0.054 (stat.)(+0.132)(-0.117)(syst.)) x 10(-39) cm(2) /nucleon, and sigma(H2O)/sigma(CH) = 0.987 +/- 0.078 (stat.)(+0.093)(-0.090)(syst.). The (nu) over bar (mu), + nu(mu), cross-section is sigma(H2O) = (1.155 +/- 0.064(stat.)(+0.148)(-0.129)(syst.)) x 10(-39) cm(2)/nucleon, sigma(CH) = (1.159 +/- 0.049(stat.)(+0.129)(-0.115)(syst.)) x 10(-39) cm(2)/nucleon, and sigma(H2O)/sigma(CH) = 0.996 +/- 0.069(stat.)(+0.083)(-0.078)(syst.).  
  Address [Abe, K.; Bronner, C.; Hayato, Y.; Ikeda, M.; Kameda, J.; Kataoka, Y.; Kato, Y.; MartiMagro, L.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakajima, Y.; Nakayama, S.; Sekiya, H.; Shiozawa, M.; Sonoda, Y.; Takeda, A.; Tanaka, H. K.; Yano, T.] Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Kamioka, Akita, Japan, Email: taichiro@post.kek.jp  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-3911 ISBN Medium  
  Area (up) Expedition Conference  
  Notes WOS:000679390000002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4902  
Permanent link to this record
 

 
Author NEXT Collaboration (Simon, A. et al); Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Martinez-Vara, M.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Querol, M.; Renner, J.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N. url  doi
openurl 
  Title Boosting background suppression in the NEXT experiment through Richardson-Lucy deconvolution Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 146 - 38pp  
  Keywords Dark Matter and Double Beta Decay (experiments)  
  Abstract Next-generation neutrinoless double beta decay experiments aim for half-life sensitivities of similar to 10(27) yr, requiring suppressing backgrounds to < 1 count/tonne/yr. For this, any extra background rejection handle, beyond excellent energy resolution and the use of extremely radiopure materials, is of utmost importance. The NEXT experiment exploits differences in the spatial ionization patterns of double beta decay and single-electron events to discriminate signal from background. While the former display two Bragg peak dense ionization regions at the opposite ends of the track, the latter typically have only one such feature. Thus, comparing the energies at the track extremes provides an additional rejection tool. The unique combination of the topology-based background discrimination and excellent energy resolution (1% FWHM at the Q-value of the decay) is the distinguishing feature of NEXT. Previous studies demonstrated a topological background rejection factor of <similar to> 5 when reconstructing electron-positron pairs in the Tl-208 1.6 MeV double escape peak (with Compton events as background), recorded in the NEXT-White demonstrator at the Laboratorio Subterraneo de Canfranc, with 72% signal efficiency. This was recently improved through the use of a deep convolutional neural network to yield a background rejection factor of similar to 10 with 65% signal efficiency. Here, we present a new reconstruction method, based on the Richardson-Lucy deconvolution algorithm, which allows reversing the blurring induced by electron diffusion and electroluminescence light production in the NEXT TPC. The new method yields highly refined 3D images of reconstructed events, and, as a result, significantly improves the topological background discrimination. When applied to real-data 1.6 MeV e(-)e(+) pairs, it leads to a background rejection factor of 27 at 57% signal efficiency.  
  Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA, Email: ander@post.bgu.ac.il;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area (up) Expedition Conference  
  Notes WOS:000677621700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4906  
Permanent link to this record
 

 
Author Double Chooz collaboration (Abrahao, T. et al); Novella, P. url  doi
openurl 
  Title Search for signatures of sterile neutrinos with Double Chooz Type Journal Article
  Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 81 Issue 8 Pages 775 - 14pp  
  Keywords  
  Abstract We present a search for signatures of neutrino mixing of electron anti-neutrinos with additional hypothetical sterile neutrino flavors using the Double Chooz experiment. The search is based on data from 5 years of operation of Double Chooz, including 2 years in the two-detector configuration. The analysis is based on a profile likelihood, i.e. comparing the data to the model prediction of disappearance in a data-to-data comparison of the two respective detectors. The analysis is optimized for a model of three active and one sterile neutrino. It is sensitive in the typical mass range 5 x 10(-3) eV(2) less than or similar to Delta m(41)(2) less than or similar to 3 x 10(-1) eV(2) for mixing angles downto sin(2) 2 theta(14) greater than or similar to 0.02. No significant disappearance additionally to the conventional disappearance related to theta(13) is observed and correspondingly exclusion bounds on the sterile mixing parameter theta(14) as a function of Delta m(41)(2) are obtained.  
  Address [Bekman, I; Hellwig, D.; Heuermann, L.; Soldin, P.; Stahl, A.; Wiebusch, C.] Rhein Westfal TH Aachen, Phys Inst 3, D-52056 Aachen, Germany, Email: wiebusch@physik.rwth-aachen.de  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area (up) Expedition Conference  
  Notes WOS:000691009900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4950  
Permanent link to this record
 

 
Author NEXT Collaboration (Adams, C. et al); Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Martinez-Vara, M.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N. url  doi
openurl 
  Title Sensitivity of a tonne-scale NEXT detector for neutrinoless double-beta decay searches Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 164 - 24pp  
  Keywords Dark Matter and Double Beta Decay (experiments)  
  Abstract The Neutrino Experiment with a Xenon TPC (NEXT) searches for the neutrinoless double-beta (0 nu beta beta) decay of Xe-136 using high-pressure xenon gas TPCs with electroluminescent amplification. A scaled-up version of this technology with about 1 tonne of enriched xenon could reach in less than 5 years of operation a sensitivity to the half-life of 0 nu beta beta decay better than 10(27) years, improving the current limits by at least one order of magnitude. This prediction is based on a well-understood background model dominated by radiogenic sources. The detector concept presented here represents a first step on a compelling path towards sensitivity to the parameter space defined by the inverted ordering of neutrino masses, and beyond.  
  Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area (up) Expedition Conference  
  Notes WOS:000694208600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4967  
Permanent link to this record
 

 
Author DUNE Collaboration (Abud, A.A. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Molina Bueno, L.; Novella, P.; Rubio, F.C.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC Type Journal Article
  Year 2022 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 17 Issue 1 Pages P01005 - 111pp  
  Keywords Noble liquid detectors (scintillation, ionization, double-phase); Photon detectors for UV; visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs, G-APDs, CCDs, EBCCDs, EMCCDs, CMOS imagers, etc); Scintillators; scintillation and light emission processes (solid, gas and liquid scintillators); Time projection Chambers (TPC)  
  Abstract The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 x 6 x 7.2 m3. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components.  
  Address [Fani, M.; Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: Stefania.Bordoni@cern.ch  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area (up) Expedition Conference  
  Notes WOS:000757487100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5131  
Permanent link to this record
 

 
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Molina Bueno, L.; Novella, P.; Rubio, F.C.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Searching for solar KDAR with DUNE Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 10 Issue 10 Pages 065 - 28pp  
  Keywords dark matter theory; neutrino detectors  
  Abstract The observation of 236 MeV muon neutrinos from kaon-decay-at-rest (KDAR) originating in the core of the Sun would provide a unique signature of dark matter annihilation. Since excellent angle and energy reconstruction are necessary to detect this monoenergetic, directional neutrino flux, DUNE with its vast volume and reconstruction capabilities, is a promising candidate for a KDAR neutrino search. In this work, we evaluate the proposed KDAR neutrino search strategies by realistically modeling both neutrino-nucleus interactions and the response of DUNE. We find that, although reconstruction of the neutrino energy and direction is difficult with current techniques in the relevant energy range, the superb energy resolution, angular resolution, and particle identification offered by DUNE can still permit great signal/background discrimination. Moreover, there are non-standard scenarios in which searches at DUNE for KDAR in the Sun can probe dark matter interactions.  
  Address [Fani, M.; Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area (up) Expedition Conference  
  Notes WOS:000758221400019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5141  
Permanent link to this record
 

 
Author Perez-Perez, J.; Amare, J.C.; Bandac, I.C.; Bayo, A.; Borjabad-Sanchez, S.; Calvo-Mozota, J.M.; Cid-Barrio, L.; Hernandez-Antolin, R.; Hernandez-Molinero, B.; Novella, P.; Pelczar, K.; Pena-Garay, C.; Romeo, B.; Ortiz de Solorzano, A.; Sorel, M.; Torrent, J.; Uson, A.; Wojna-Pelczar, A.; Zuzel, G. url  doi
openurl 
  Title Radon Mitigation Applications at the Laboratorio Subterráneo de Canfranc (LSC) Type Journal Article
  Year 2022 Publication Universe Abbreviated Journal Universe  
  Volume 8 Issue 2 Pages 112 - 20pp  
  Keywords radon; neutrinos; HPGe-detector; LSC  
  Abstract The Laboratorio Subterraneo de Canfranc (LSC) is the Spanish national hub for low radioactivity techniques and the associated scientific and technological applications. The concentration of the airborne radon is a major component of the radioactive budget in the neighborhood of the detectors. The LSC hosts a Radon Abatement System, which delivers a radon suppressed air with 1.1 & PLUSMN;0.2 mBq/m(3) of Rn-222. The radon content in the air is continuously monitored with an Electrostatic Radon Monitor. Measurements with the double beta decay demonstrators NEXT-NEW and CROSS and the gamma HPGe detectors show the important reduction of the radioactive background due to the purified air in the vicinity of the detectors. We also discuss the use of this facility in the LSC current program which includes NEXT-100, low background biology experiments and radiopure copper electroformation equipment placed in the radon-free clean room.  
  Address [Perez-Perez, Javier; Bandac, Iulian Catalin; Bayo, Alberto; Borjabad-Sanchez, Silvia; Calvo-Mozota, Jose Maria; Cid-Barrio, Laura; Hernandez-Antolin, Rebecca; Hernandez-Molinero, Beatriz; Pena-Garay, Carlos; Romeo, Beatriz] Lab Subterraneo Canfranc LSC, Canfranc Estn 22880, Spain, Email: javier.perez.perez@uj.edu.pl;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area (up) Expedition Conference  
  Notes WOS:000762509500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5143  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva