|   | 
Details
   web
Records
Author Barenboim, G.
Title Gravity triggered neutrino condensates Type Journal Article
Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 82 Issue 9 Pages 093014 - 13pp
Keywords
Abstract In this work we use the Schwinger-Dyson equations to study the possibility that an enhanced gravitational attraction triggers the formation of a right-handed neutrino condensate, inducing dynamical symmetry breaking and generating a Majorana mass for the right-handed neutrino at a scale appropriate for the seesaw mechanism. The composite field formed by the condensate phase could drive an early epoch of inflation. We find that to the lowest order, the theory does not allow dynamical symmetry breaking. Nevertheless, thanks to the large number of matter fields in the model, the suppression by additional powers in G of higher order terms can be compensated, boosting them up to their lowest order counterparts. This way chiral symmetry can be broken dynamically and the infrared mass generated turns out to be in the expected range for a successful seesaw scenario.
Address [Barenboim, Gabriela] Univ Valencia CSIC, Dept Fis Teor, E-46100 Burjassot, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area (up) Expedition Conference
Notes ISI:000288128100001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 535
Permanent link to this record
 

 
Author BABAR Collaboration (del Amo Sanchez, P. et al); Lopez-March, N.; Martinez-Vidal, F.; Oyanguren, A.
Title Dalitz plot analysis of D-s(+) -> K+ K- pi(+) Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 83 Issue 5 Pages 052001 - 20pp
Keywords
Abstract We perform a Dalitz plot analysis of about 100 000 D-s(+) decays to K+ K- pi(+) and measure the complex amplitudes of the intermediate resonances which contribute to this decay mode. We also measure the relative branching fractions of D-s(+) -> K+ K+ pi(-) and D-s(+) -> K+ K+ K-. For this analysis we use a 384 fb(-1) data sample, recorded by the BABAR detector at the PEP-II asymmetric-energy e(+)e(-) collider running at center-of-mass energies near 10.58 GeV.
Address [del Amo Sanchez, P.; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.] Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area (up) Expedition Conference
Notes ISI:000287961100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 554
Permanent link to this record
 

 
Author Fernandez-Martinez, E.; Li, T.; Pascoli, S.; Mena, O.
Title Improvement of the low energy neutrino factory Type Journal Article
Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 81 Issue 7 Pages 073010 - 13pp
Keywords
Abstract The low energy neutrino factory has been proposed as a very sensitive setup for future searches for CP violation and matter effects. Here we study how its performance is affected when the experimental specifications of the setup are varied. Most notably, we have considered the addition of the “platinum'' nu(mu) -> nu(e) channel. We find that, while theoretically the extra channel provides very useful complementary information and helps to lift degeneracies, its practical usefulness is lost when considering realistic background levels. Conversely, an increase in statistics in the ”golden'' nu(mu) -> nu(e) channel and, to some extent, an improvement in the energy resolution, lead to an important increase in the performance of the facility, given the rich energy dependence of the "golden'' channel at these energies. We show that a low energy neutrino factory with a baseline of 1300 km, muon energy of 4.5 GeV, and either a 20 kton totally active scintillating detector or 100 kton liquid argon detector, can have outstanding sensitivity to the neutrino oscillation parameters theta(13), delta, and the mass hierarchy. For our estimated exposure of 2: 8 x 10(23) kton x decays per muon polarity, the low energy neutrino factory has sensitivity to theta(13) and delta for sin(2)(2 theta(13)) > 10(-4) and to the mass hierarchy for sin(2)(2 theta(13)) > 10(-3)
Address [Martinez, Enrique Fernandez] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany, Email: enfmarti@mppmu.mpg.de
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area (up) Expedition Conference
Notes ISI:000277201900018 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 458
Permanent link to this record
 

 
Author Gonzalez-Alonso, M.; Pich, A.; Prades, J.
Title Violation of quark-hadron duality and spectral chiral moments in QCD Type Journal Article
Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 81 Issue 7 Pages 074007 - 10pp
Keywords
Abstract We analyze the spectral moments of the V – A two-point correlation function. Using all known short-distance constraints and the most recent experimental data from tau decays, we determine the lowest spectral moments, trying to assess the uncertainties associated with the so-called violations of quark-hadron duality. We have generated a large number of acceptable spectral functions, satisfying all conditions, and have used them to extract the wanted hadronic parameters through a careful statistical analysis. We obtain accurate values for the chi PT couplings L-10 and C-87, and a realistic determination of the dimension six and eight contributions in the operator product expansion, O-6 = (-5.4(-1.6)(+3.6)) . 10(-3) GeV6 and O-8 = d(-8.9-(12.6)(7.4+)) 10(-3) GeV8, showing that the duality-violation effects have been underestimated in previous literature.
Address [Gonzalez-Alonso, Martin; Pich, Antonio] Univ Valencia, CSIC, Dept Fis Teor, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area (up) Expedition Conference
Notes ISI:000277201900025 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 459
Permanent link to this record
 

 
Author Bernabeu, J.; Espinoza, C.; Mavromatos, N.E.
Title Cosmological constant and local gravity Type Journal Article
Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 81 Issue 8 Pages 084002 - 7pp
Keywords
Abstract We discuss the linearization of Einstein equations in the presence of a cosmological constant, by expanding the solution for the metric around a flat Minkowski space-time. We demonstrate that one can find consistent solutions to the linearized set of equations for the metric perturbations, in the Lorentz gauge, which are not spherically symmetric, but they rather exhibit a cylindrical symmetry. We find that the components of the gravitational field satisfying the appropriate Poisson equations have the property of ensuring that a scalar potential can be constructed, in which both contributions, from ordinary matter and Lambda > 0, are attractive. In addition, there is a novel tensor potential, induced by the pressure density, in which the effect of the cosmological constant is repulsive. We also linearize the Schwarzschild-de Sitter exact solution of Einstein's equations ( due to a generalization of Birkhoff's theorem) in the domain between the two horizons. We manage to transform it first to a gauge in which the 3-space metric is conformally flat and, then, make an additional coordinate transformation leading to the Lorentz gauge conditions. We compare our non-spherically symmetric solution with the linearized Schwarzschild-de Sitter metric, when the latter is transformed to the Lorentz gauge, and we find agreement. The resulting metric, however, does not acquire a proper Newtonian form in terms of the unique scalar potential that solves the corresponding Poisson equation. Nevertheless, our solution is stable, in the sense that the physical energy density is positive.
Address [Bernabeu, Jose; Espinoza, Catalina] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area (up) Expedition Conference
Notes ISI:000277205000057 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 460
Permanent link to this record