toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Escrig, S. et al; Morales, A.I. url  doi
openurl 
  Title Persistence of the Z=28 shell gap in A=75 isobars: Identification of a possible (1/2(-)) μs isomer in Co-75 and beta decay to Ni-75 Type Journal Article
  Year 2021 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 103 Issue 6 Pages 064328 - 12pp  
  Keywords  
  Abstract Background: The evolution of shell structure around doubly magic exotic nuclei is of great interest in nuclear physics and astrophysics. In the 'southwest' region of Ni-78, the development of deformation might trigger a major shift in our understanding of explosive nucleosynthesis. To this end, new spectroscopic information on key close-lying nuclei is very valuable. Purpose: We intend to measure the isomeric and beta decay of Co-75, with one-proton and two-neutron holes relative to Ni-78, to access new nuclear structure information in Co-75 and its beta-decay daughters Ni-75 and Ni-74. Methods: The nucleus Co-75 is produced in relativistic in-flight fission reactions of U-238 at the Radioactive Ion Beam Factory in the RIKEN Nishina Center. Its isomeric and f decay are studied exploiting the BigRIPS and EURICA setups. Results: We obtain partial beta-decay spectra for Ni-75 and Ni-74, and report a new isomeric transition in Co-75. The energy [E-gamma = 1914(2) keV] and half-life [t(1/2) = 13(6) μs] of the delayed gamma ray lend support for the existence of aJ(pi) = (1/2(-)) isomeric state at 1914(2) keV. A comparison with PFSDG-U shell-model calculations provides a good account for the observed states in Ni-75, but the first calculated 1/2(-) level in Co-75, a prolate K = 1/2 state, is predicted about 1 MeV below the observed (1/2(-)) level. Conclusions: The spherical-like structure of the lowest-lying excited states in Ni-75 is proved. In the case of Co-75, the results suggest that the dominance of the spherical configurations over the deformed ones might be stronger than expected below Ni-78. Further experimental efforts to discern the nature of the J(pi) = (1/2(-)) isomer are necessary.  
  Address [Escrig, S.; Morales, A., I] Univ Valencia, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain, Email: Samuel.Escrig@csic.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area (up) Expedition Conference  
  Notes WOS:000669040500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4887  
Permanent link to this record
 

 
Author Escrig, S. et al; Bernabeu, J.; Lacasta, C.; Solaz, C. doi  openurl
  Title First test of energy response of the micro-vertex detection system for the WASA-FRS Experiments Type Journal Article
  Year 2024 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1064 Issue Pages 169392 - 4pp  
  Keywords Micro-strip silicon sensor; Tracking detector; Micro-vertex detector  
  Abstract The hypernuclei, which are nuclei that contain the quark s, have been studied for more than 50 years. Notwithstanding, the recent experiments using high-energy heavy-ion induced reactions have challenged their current understanding. The high multiplicity of particles generated in the reaction allows for the measurement of the interaction point of the primary beam with the target. Then, a micro-vertex detection system for the WASA-FRS Experiments has been developed. Several experimental tests have been performed with Sr-90 and Bi-207 beta sources and a 10-MeV proton beam at the CMAM tandem accelerator, and their results are reported.  
  Address [Escrig, S.; Rappold, C.; Ruiz, D. Fernandez; Borge, M. J. Garcia; Tavora, V. Garcia; Aguirre, A. Nerio; Martinez, A. Perea; Sanchez-Prieto, J.; Tengblad, O.] CSIC, IEM, Madrid 28006, Spain, Email: samuel.escrig@csic.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area (up) Expedition Conference  
  Notes WOS:001301017700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6242  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva