toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ortiz Arciniega, J.L.; Carrio, F.; Valero, A. url  doi
openurl 
  Title FPGA implementation of a deep learning algorithm for real-time signal reconstruction in particle detectors under high pile-up conditions Type Journal Article
  Year 2019 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 14 Issue Pages P09002 - 13pp  
  Keywords Data processing methods; Pattern recognition; cluster finding; calibration and fitting methods; Simulation methods and programs  
  Abstract The analog signals generated in the read-out electronics of particle detectors are shaped prior to the digitization in order to improve the signal to noise ratio (SNR). The real amplitude of the analog signal is then obtained using digital filters, which provides information about the energy deposited in the detector. The classical digital filters have a good performance in ideal situations with Gaussian electronic noise and no pulse shape distortion. However, high-energy particle colliders, such as the Large Hadron Collider (LHC) at CERN, can produce multiple simultaneous events, which produce signal pileup. The performance of classical digital filters deteriorates in these conditions since the signal pulse shape gets distorted. In addition, this type of experiments produces a high rate of collisions, which requires high throughput data acquisitions systems. In order to cope with these harsh requirements, new read-out electronics systems are based on high-performance FPGAs, which permit the utilization of more advanced real-time signal reconstruction algorithms. In this paper, a deep learning method is proposed for real-time signal reconstruction in high pileup particle detectors. The performance of the new method has been studied using simulated data and the results are compared with a classical FIR filter method. In particular, the signals and FIR filter used in the ATLAS Tile Calorimeter are used as benchmark. The implementation, resources usage and performance of the proposed Neural Network algorithm in FPGA are also presented.  
  Address (down) [Ortiz Arciniega, J. L.] Univ Valencia, Avinguda Univ S-N, Burjassot, Spain, Email: orarjo@alumni.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000486990000002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4150  
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.; Wojnar, A. url  doi
openurl 
  Title Minimum main sequence mass in quadratic Palatini f(R) gravity Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue 4 Pages 044020 - 9pp  
  Keywords  
  Abstract General relativity yields an analytical prediction of a minimum required mass of roughly similar to 0.08-0.09 M-circle dot for a star to stably burn sufficient hydrogen to fully compensate photospheric losses and, therefore, to belong to the main sequence. Those objects below this threshold ( brown dwarfs) eventually cool down without any chance to stabilize their internal temperature. In this work we consider quadratic Palatini f(R) gravity and show that the corresponding Newtonian hydrostatic equilibrium equation contains a new term whose effect is to introduce a weakening/strengthening of the gravitational interaction inside astrophysical bodies. This fact modifies the general relativity prediction for this minimum main sequence mass. Through a crude analytical modeling we use this result in order to constraint a combination of the quadratic f(R) gravity parameter and the central density according to astrophysical observations.  
  Address (down) [Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, Ctr Mixto, CSIC, E-46100 Valencia, Spain, Email: gonzalo.olmo@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000480390800009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4108  
Permanent link to this record
 

 
Author Oldengott, I.M.; Barenboim, G.; Kahlen, S.; Salvado, J.; Schwarz, D.J. url  doi
openurl 
  Title How to relax the cosmological neutrino mass bound Type Journal Article
  Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 049 - 18pp  
  Keywords neutrino masses from cosmology; cosmological neutrinos; cosmological parameters from CMBR; cosmological parameters from LSS  
  Abstract We study the impact of non-standard momentum distributions of cosmic neutrinos on the anisotropy spectrum of the cosmic microwave background and the matter power spectrum of the large scale structure. We show that the neutrino distribution has almost no unique observable imprint, as it is almost entirely degenerate with the effective number of neutrino flavours, N-eff, and the neutrino mass, m(nu). Performing a Markov chain Monte Carlo analysis with current cosmological data, we demonstrate that the neutrino mass bound heavily depends on the assumed momentum distribution of relic neutrinos. The message of this work is simple and has to our knowledge not been pointed out clearly before: cosmology allows that neutrinos have larger masses if their average momentum is larger than that of a perfectly thermal distribution. Here we provide an example in which the mass limits are relaxed by a factor of two.  
  Address (down) [Oldengott, Isabel M.; Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: isabel.oldengott@uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000466578400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4001  
Permanent link to this record
 

 
Author Nieves, J.; Pavao, R.; Sakai, S. url  doi
openurl 
  Title Lambda(b) decays into Lambda cl(nu)over-barl and Lambda c*pi(-) [ Lambda(c)* = Lambda(c)( 2595) and Lambda(c)(2625)] and heavy quark spin symmetry Type Journal Article
  Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 79 Issue 5 Pages 417 - 20pp  
  Keywords  
  Abstract We study the implications for bc=c(2595) and c(2625)] decays that can be deduced from heavy quark spin symmetry (HQSS). Identifying the odd parity c(2595) and c(2625) resonances as HQSS partners, with total angular momentum-parity jqP=1- for the light degrees of freedom, we find that the ratios (bc(2595)-)/(bc(2625)-) and (bc(2595)) agree, within errors, with the experimental values given in the Review of Particle Physics. We discuss how future, and more precise, measurements of the above branching fractions could be used to shed light into the inner HQSS structure of the narrow c(2595) odd-parity resonance. Namely, we show that such studies would constrain the existence of a sizable jqP</mml:msubsup>=0- component in its wave-function, and/or of a two-pole pattern, in analogy to the case of the similar (1405) resonance in the strange sector, as suggested by most of the approaches that describe the c(2595) as a hadron molecule. We also investigate the lepton flavor universality ratios R[c]=B( may be affected by a new source of potentially large systematic errors if there are two) poles.  
  Address (down) [Nieves, J.; Pavao, R.] Ctr Mixto CSIC UV, Inst Fis Corpuscular, Inst Invest Paterna, Aptdo 22085, Valencia 46071, Spain, Email: shsakai@itp.ac.cn  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000468374700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4021  
Permanent link to this record
 

 
Author Nebot, M.; Botella, F.J.; Branco, G.C. url  doi
openurl 
  Title Vacuum induced CP violation generating a complex CKM matrix with controlled scalar FCNC Type Journal Article
  Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 79 Issue 8 Pages 711 - 23pp  
  Keywords  
  Abstract We propose. a viable minimal model with spontaneous CP violation in the framework of a two Higgs doublet model. The model is based on a generalised Branco-Grimus-Lavoura model with a flavoured Z(2) symmetry, under which two of the quark families are even and the third one is odd. The lagrangian respects CP invariance, but the vacuum has a CP violating phase, which is able to generate a complex CKM matrix, with the rephasing invariant strength of CP violation compatible with experiment. The question of scalar mediated flavour changing neutral couplings is carefully studied. In particular we point out a deep connection between the generation of a complex CKM matrix from a vacuum phase and the appearance of scalar FCNC. The scalar sector is presented in detail, showing that the new scalars are necessarily lighter than 1 TeV. A complete analysis of the model including the most relevant constraints is performed, showing that it is viable and that it has definite implications for the observation of New Physics signals in, for example, flavour changing Higgs decays or the discovery of the new scalars at the LHC. We give special emphasis to processes like t -> hc, hu, as well as h -> bs, bd, which are relevant for the LHC and the ILC.  
  Address (down) [Nebot, Miguel; Branco, Gustavo C.] UL, Dept Fis, Inst Super Tecn, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal, Email: miguel.r.nebot.gomez@tecnico.ulisboa.pt;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000483225300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4130  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva