Saul-Sala, E., Sobczyk, J. E., Rafi Alam, M., Alvarez-Ruso, L., & Nieves, J. (2021). Weak kaon production off the nucleon and Watson's theorem. Phys. Lett. B, 817, 136349–7pp.
Abstract: We have improved the tree-level model of Ref.[1] for weak production of kaons off nucleons by partially restoring unitarity. This is achieved by imposing Watson's theorem to the dominant vector and axial-vector contributions in appropriate angular momentum and isospin quantum number sectors. The observable consequences of this procedure are investigated.
|
Mantovani Sarti, V., & Vento, V. (2014). The half-skyrmion phase in a chiral-quark model. Phys. Lett. B, 728, 323–327.
Abstract: The Chiral Dilaton Model, where baryons arise as non-topological solitons built from the interaction of quarks and chiral mesons, shows in the high density low temperature regime a two phase scenario in the nuclear matter phase diagram. Dense soliton matter described by the Wigner-Seitz approximation generates a periodic potential in terms of the sigma and pion fields that leads to the formation of a band structure. The analysis up to three times nuclear matter density shows that soliton matter undergoes two separate phase transitions: a delocalization of the baryon number density leading to B = 1/2 structures, as in skyrmion matter, at moderate densities, and quark deconfinement at larger densities. This description fits well into the so-called quarkyonic phase where, before deconfinement, nuclear matter should undergo structural changes involving the restoration of fundamental symmetries of QCD.
|
Sanchis-Lozano, M. A., Sarkisyan-Grinbaum, E. K., & Moreno-Picot, S. (2016). Searching for hidden sector in multiparticle production at LHC. Phys. Lett. B, 754, 353–359.
Abstract: We study the impact of a hidden sector beyond the Standard Model, e.g. a Hidden Valley model, on factorial moments and cumulants of multiplicity distributions in multiparticle production with a special emphasis on the prospects for LHC results.
|
Sanchis-Lozano, M. A., & Sarkisyan-Grinbaum, E. (2017). A correlated-cluster model and the ridge phenomenon in hadron-hadron collisions. Phys. Lett. B, 766, 170–176.
Abstract: A study of the near-side ridge phenomenon in hadron-hadron collisions based on a cluster picture of multiparticle production is presented. The near-side ridge effect is shown to have a natural explanation in this context provided that clusters are produced in a correlated manner in the collision transverse plane.
|
Sanchis-Lozano, M. A., & Sarkisyan-Grinbaum, E. K. (2018). Searching for new physics with three-particle correlations in pp collisions at the LHC. Phys. Lett. B, 781, 505–509.
Abstract: New phenomena involving pseudorapidity and azimuthal correlations among final-state particles in pp collisions at the LHC can hint at the existence of hidden sectors beyond the Standard Model. In this paper we rely on a correlated-cluster picture of multiparticle production, which was shown to account for the ridge effect, to assess the effect of a hidden sector on three-particle correlations concluding that there is a potential signature of new physics that can be directly tested by experiments using well-known techniques.
|
Sahin, E. et al, & Algora, A. (2024). Collectivity at the prolate-oblate transition: The 21+ lifetime of 190W. Phys. Lett. B, 857, 138976–8pp.
Abstract: The neutron-rich rare isotope W-190 is discussed as a candidate for a prolate-oblate transitional nucleus with maximum gamma-softness. The collectivity of this isotope is assessed for the first time by the measurement of the reduced E2 transition probability of its first 2(+) state to the ground state. The experiment employed the FAst TIming Array (FATIMA), comprised of 36 LaBr3(Ce) scintillators, which was part of the DESPEC setup at GSI, Darmstadt. The 4(1)(+) and 2(1)(+) states of W-190 were populated subsequently to the decay of its 127(12) μs isomeric J(pi )= 10(-) state. The mean lifetime of the 2(1)(+) state was determined to be tau = 274(28) ps, which corresponds to a B(E2; 2(1)(+ )-> 0(1)(+)) value of 95(10) W.u. The results motivated a revision of previous calculations within an energy-density functional-based interacting boson model-2 approach, yielding E2 transition properties and spectroscopic quadrupole moments for tungsten isotopes. From comparison to theory, the new data suggest that W-190 is at the transition from prolate to oblate structure along the W isotopic chain, which had previously been discussed as a nuclear shape-phase transition.
|
Ruiz-Femenia, P., & Zahiri-Abyaneh, M. (2015). On the minimality of the order p(6) chiral Lagrangian. Phys. Lett. B, 751, 256–261.
Abstract: A method to find relations between the operators in the mesonic Lagrangian of Chiral Perturbation Theory at order p(6) is presented. The procedure can be used to establish if the basis of operators in the Lagrangian is minimal. As an example, we apply the method to the two-flavor case in the absence of scalar and pseudo-scalar sources (s = p = 0), and conclude that the minimal Lagrangian contains 27 independent operators.
|
Roy, S., Morisi, S., Singh, N. N., & Valle, J. W. F. (2015). The Cabibbo angle as a universal seed for quark and lepton mixings. Phys. Lett. B, 748, 1–4.
Abstract: A model-independent ansatz to describe lepton and quark mixing in a unified way is suggested based upon the Cabibbo angle. In our framework neutrinos mix in a “Bi-Large” fashion, while the charged leptons mix as the “down-type” quarks do. In addition to the standard Wolfenstein parameters (lambda, A) two other free parameters (psi, delta) are needed to specify the physical lepton mixing matrix. Through this simple assumption one makes specific predictions for the atmospheric angle as well as leptonic CP violation in good agreement with current observations.
|
Romeo, B., Stramaccioni, D., Menéndez, J., & Valiente-Dobón, J. J. (2025). A pathway to unveiling neutrinoless ββ decay nuclear matrix elements via γγ decay. Phys. Lett. B, 860, 139186–7pp.
Abstract: We investigate the experimental feasibility of detecting second-order double-magnetic dipole ( – 1 1) decays from double isobaric analog states (DIAS), which have recently been found to be strongly correlated with the nuclear matrix elements of neutrinoless decay. Using the nuclear shell model, we compute theoretical branching ratios for -11 decays and compare them with other competing processes, such as single- decay and proton emission, which represent the dominant decay channels. We also estimate the potential competition from internal conversion and internal pair creation, which can influence the decay dynamics. Additionally, we propose an experimental strategy based on using LaBr3 scintillators to identify -11 transitions from the DIAS amidst the background of the competing processes. Our approach emphasizes the challenges of isolating the rare -11 decay and suggests ways to enhance the experimental detection sensitivity. Our simulations suggest that it may be possible to access experimentally -11 decays from DIAS, shedding light on the neutrinoless decay nuclear matrix elements.
|
Rojas, N., Srivastava, R., & Valle, J. W. F. (2019). Simplest scoto-seesaw mechanism. Phys. Lett. B, 789, 132–136.
Abstract: By combining the simplest (3,1) version of the seesaw mechanism containing a single heavy “right-handed” neutrino with the minimal scotogenic approach to dark matter, we propose a theory for neutrino oscillations. The “atmospheric” mass scale arises at tree level from the seesaw, while the “solar” oscillation scale emerges radiatively, through a loop involving the “dark sector” exchange. Such simple setup gives a clear interpretation of the neutrino oscillation lengths, has a viable WIMP dark matter candidate, and implies a lower bound on the neutrinoless double beta decay rate.
|