toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Portillo-Sanchez, D.; Escribano, P.; Vicente, A. url  doi
openurl 
  Title Ultraviolet extensions of the Scotogenic model Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 023 - 35pp  
  Keywords Baryon; Lepton Number Violation; Specific BSM Phenomenology; New Light Particles; Particle Nature of Dark Matter  
  Abstract The Scotogenic model is a popular scenario that induces radiative Majorana neutrino masses and includes a weakly-interacting dark matter candidate. We classify all possible ultraviolet extensions of the Scotogenic model in which (i) the dark DOUBLE-STRUCK CAPITAL Z(2) parity emerges at low energies after the spontaneous breaking of a global U(1)(L) lepton number symmetry, and (ii) the low-energy effective theory contains a naturally small lepton number breaking parameter, suppressed by the mass of a heavy mediator integrated out at tree-level. We find 50 such models and discuss two of them in detail to illustrate our setup. We also discuss some general aspects of the phenomenology of the models in our classification, exploring possible lepton flavor violating signals, collider signatures and implications for dark matter. The phenomenological prospects of these scenarios are very rich due to the presence of additional scalar states, including a massless Goldstone boson.  
  Address (down) [Portillo-Sanchez, Diego] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Fis, Ave Inst Politecn Nacl 2508, Mexico City E-07360, Mexico, Email: pablo.escribano@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001044764300006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5614  
Permanent link to this record
 

 
Author Pompa, F.; Schwetz, T.; Zhu, J.Y. url  doi
openurl 
  Title Impact of nuclear matrix element calculations for current and future neutrinoless double beta decay searches Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 104 - 29pp  
  Keywords Baryon; Lepton Number Violation; Neutrino Interactions  
  Abstract Nuclear matrix elements (NME) are a crucial input for the interpretation of neutrinoless double beta decay data. We consider a representative set of recent NME calculations from different methods and investigate the impact on the present bound on the effective Majorana mass m(& beta;& beta;) by performing a combined analysis of the available data as well as on the sensitivity reach of future projects. A crucial role is played by the recently discovered short-range contribution to the NME, induced by light Majorana neutrino masses. Depending on the NME model and the relative sign of the long- and short-range contributions, the current 3 & sigma; bound can change between m(& beta;& beta;)< 40 meV and 600 meV. The sign-uncertainty may either boost the sensitivity of next-generation experiments beyond the region for m(& beta;& beta;) predicted for inverted mass ordering or prevent even advanced setups to reach this region. Furthermore, we study the possibility to distinguish between different NME calculations by assuming a positive signal and by combining measurements from different isotopes. Such a discrimination will be impossible if the relative sign of the long- and short-range contribution remains unknown, but can become feasible if m(& beta;& beta;) & GSIM; 40 meV and if the relative sign is known to be positive. Sensitivities will be dominated by the advanced Ge-76 and Xe-136 setups assumed here, but NME model-discrimination improves if data from a third isotope is added, e.g., from Te-130 or Mo-100.  
  Address (down) [Pompa, Federica] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Parc Cientif UV, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: zhujingyu@sjtu.edu.cn  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001016276900003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5580  
Permanent link to this record
 

 
Author Pich, A.; Rodriguez-Sanchez, A. url  doi
openurl 
  Title Violations of quark-hadron duality in low-energy determinations of alpha(s) Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 145 - 42pp  
  Keywords The Strong Coupling; Semi-Leptonic Decays; Specific QCD Phenomenology; Chiral Lagrangian  
  Abstract Using the spectral functions measured in tau decays, we investigate the actual numerical impact of duality violations on the extraction of the strong coupling. These effects are tiny in the standard alpha(s)(m(tau)(2)) determinations from integrated distributions of the hadronic spectrum with pinched weights, or from the total tau hadronic width. The pinched-weight factors suppress very efficiently the violations of duality, making their numerical effects negligible in comparison with the larger perturbative uncertainties. However, combined fits of alpha(s) and duality-violation parameters, performed with non-protected weights, are subject to large systematic errors associated with the assumed modelling of duality-violation effects. These uncertainties have not been taken into account in the published analyses, based on specific models of quark-hadron duality.  
  Address (down) [Pich, Antonio] Univ Valencia, Dept Fis Teor, CSIC, IFIC, Parque Cient,Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: Antonio.Pich@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000831256400009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5303  
Permanent link to this record
 

 
Author Pich, A.; Rosell, I.; Santos, J.; Sanz-Cillero, J.J. url  doi
openurl 
  Title Fingerprints of heavy scales in electroweak effective Lagrangians Type Journal Article
  Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 012 - 60pp  
  Keywords Beyond Standard Model; Chiral Lagrangians; Higgs Physics; Technicolor and Composite Models  
  Abstract The couplings of the electroweak effective theory contain information on the heavy-mass scales which are no-longer present in the low-energy Lagrangian. We build a general effective Lagrangian, implementing the electroweak chiral symmetry breaking SU(2)(L) circle times SU(2)(R) -> SU(2)(L+R), which couples the known particle fields to heavier states with bosonic quantum numbers J(P) = 0(+/-) and 1(+/-). We consider colour-singlet heavy fields that are in singlet or triplet representations of the electroweak group. Integrating out these heavy scales, we analyze the pattern of low-energy couplings among the light fields which are generated by the massive states. We adopt a generic non-linear realization of the electroweak symmetry breaking with a singlet Higgs, without making any assumption about its possible doublet structure. Special attention is given to the different possible descriptions of massive spin-1 fields and the differences arising from naive implementations of these formalisms, showing their full equivalence once a proper short-distance behaviour is required.  
  Address (down) [Pich, Antonio; Santos, Joaquin] Univ Valencia, CSIC, IFIC, Dept Fis Teor, Apt Correus 22085, E-46071 Valencia, Spain, Email: pich@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000398449400004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3074  
Permanent link to this record
 

 
Author Pich, A.; Rosell, I.; Sanz-Cillero, J.J. url  doi
openurl 
  Title The vector form factor at the next-to-leading order in 1/N-C: chiral couplings L-9(mu) and C-88(mu)-C-90(mu) Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 109 - 23pp  
  Keywords 1/N Expansion; Chiral Lagrangians; QCD  
  Abstract Using the Resonance Chiral Theory Lagrangian, we perform a calculation of the vector form factor of the pion at the next-to-leading order (NLO) in the 1/N-C expansion. Imposing the correct QCD short-distance constraints, one fixes the amplitude in terms of the pion decay constant F and resonance masses. Its low momentum expansion determines then the corresponding O(p(4)) and O(p(6)) low-energy chiral couplings at NLO, keeping control of their renormalization scale dependence. At mu(0) = 0.77 GeV, we obtain L-9(mu(0)) = (7.9 +/- 0.4).10(-3) and C-88(mu(0)) – C-90(mu(0)) = (-4.6 +/- 0.4).10(-5).  
  Address (down) [Pich, Antonio; Rosell, Ignasi] Univ Valencia CSIC, Dept Fis Teor, IFIC, E-46071 Valencia, Spain, Email: Antonio.Pich@uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000287939200009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 620  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva