toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author De Romeri, V.; Hirsch, M.; Malinsky, M. url  doi
openurl 
  Title Soft masses in supersymmetric SO(10) GUTs with low intermediate scales Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 84 Issue 5 Pages 053012 - 15pp  
  Keywords  
  Abstract The specific shape of the squark, slepton and gaugino mass spectra, if measured with sufficient accuracy, can provide invaluable information not only about the dynamics underpinning their origin at some very high scale such as the unification scale M(G), but also about the intermediate scale physics encountered throughout their renormalization group equations evolution down to the energy scale accessible for the LHC. In this work, we study general features of the TeV scale soft supersymmetry breaking parameters stemming from a generic mSugra configuration within certain classes of supersymmetry SO(10) GUTs with different intermediate symmetries below M(G). We show that particular combinations of soft masses show characteristic deviations from the mSugra limit in different models and thus, potentially, allow to distinguish between these, even if the new intermediate scales are outside the energy range probed at accelerators. We also compare our results to those obtained for the three minimal seesaw models with mSugra boundary conditions and discuss the main differences between those and our SO(10) based models.  
  Address (down) [De Romeri, V; Hirsch, M; Malinsky, M] Univ Valencia, AHEP Grp, Inst Fis Corpuscular CSIC, E-46071 Valencia, Spain, Email: deromeri@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000295267700001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 777  
Permanent link to this record
 

 
Author De Bernardis, F.; Martinelli, M.; Melchiorri, A.; Mena, O.; Cooray, A. url  doi
openurl 
  Title Future weak lensing constraints in a dark coupled universe Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 84 Issue 2 Pages 023504 - 10pp  
  Keywords  
  Abstract Probing the dark matter clustering and its evolution with weak lensing surveys constitutes a unique tool to constrain interacting dark energy models. We focus here on weak lensing forecasts from future Euclid and LSST-like surveys combined with the expected results from the ongoing Planck cosmic microwave background satellite experiment. We find that these future data could constrain the dimensionless coupling between dark matter and dark energy to be smaller than a few x 10(-2), improving the CMB-only constraint by at least 2 orders of magnitude. We also show that coupled cosmologies can substantially alter the constraints on cosmological parameters obtained from CMB experiments under the assumption of noninteracting cosmologies unless weak lensing data is considered.  
  Address (down) [De Bernardis, F; Cooray, A] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000292515000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 681  
Permanent link to this record
 

 
Author de Azcarraga, J.A.; Kamimura, K.; Lukierski, J. url  doi
openurl 
  Title Generalized cosmological term from Maxwell symmetries Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 83 Issue 12 Pages 124036 - 8pp  
  Keywords  
  Abstract By gauging the Maxwell spacetime algebra, the standard geometric framework of Einstein gravity with cosmological constant term is extended by adding six four-vector fields A(mu)(ab)(x) associated with the six Abelian tensorial charges in the Maxwell algebra. In the simplest Maxwell extension of Einstein gravity this leads to a generalized cosmological term that includes a contribution from these vector fields. We also consider going beyond the basic gravitational model by means of bilinear actions for the new Abelian gauge fields. Finally, an analogy with the supersymmetric generalization of gravity is indicated. In an appendix, we propose an equivalent description of the model in terms of a shift of the standard spin connection by the A(mu)(ab)(x) fields.  
  Address (down) [de Azcarrraga, Jose A.] Univ Valencia, Dept Theoret Phys, E-46100 Burjassot, Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000291936200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 662  
Permanent link to this record
 

 
Author de Azcarraga, J.A.; Izquierdo, J.M. url  doi
openurl 
  Title On a class of n-Leibniz deformations of the simple Filippov algebras Type Journal Article
  Year 2011 Publication Journal of Mathematical Physics Abbreviated Journal J. Math. Phys.  
  Volume 52 Issue 2 Pages 023521 - 13pp  
  Keywords  
  Abstract We study the problem of infinitesimal deformations of all real, simple, finite-dimensional Filippov (or n-Lie) algebras, considered as a class of n-Leibniz algebras characterized by having an n-bracket skewsymmetric in its n-1 first arguments. We prove that all n > 3 simple finite-dimensional Filippov algebras (FAs) are rigid as n-Leibniz algebras of this class. This rigidity also holds for the Leibniz deformations of the semisimple n = 2 Filippov (i.e., Lie) algebras. The n = 3 simple FAs, however, admit a nontrivial one-parameter infinitesimal 3-Leibniz algebra deformation. We also show that the n >= 3 simple Filippov algebras do not admit nontrivial central extensions as n-Leibniz algebras of the above class.  
  Address (down) [de Azcarraga, Jose A.] Univ Valencia, Dept Theoret Phys, E-46100 Burjassot, Valencia, Spain, Email: j.a.de.azcarraga@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2488 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000287811800050 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 558  
Permanent link to this record
 

 
Author de Azcarraga, J.A.; Izquierdo, J.M.; Picon, M. url  doi
openurl 
  Title Contractions of Filippov algebras Type Journal Article
  Year 2011 Publication Journal of Mathematical Physics Abbreviated Journal J. Math. Phys.  
  Volume 52 Issue 1 Pages 013516 - 24pp  
  Keywords  
  Abstract We introduce in this paper the contractions B-c of n-Lie (or Filippov) algebras B and show that they have a semidirect structure as their n = 2 Lie algebra counterparts. As an example, we compute the nontrivial contractions of the simple A(n+1) Filippov algebras. By using the. Inonu-Wigner and the generalized Weimar-Woods contractions of ordinary Lie algebras, we compare (in the B = A(n+1) simple case) the Lie algebras Lie B-c (the Lie algebra of inner endomorphisms of B-c) with certain contractions (Lie B)(IW) and (Lie B)(W-W) of the Lie algebra Lie B associated with B.  
  Address (down) [de Azcarraga, Jose A.; Picon, Moises] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: j.a.de.azcarraga@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2488 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000286898400034 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 574  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva