Sborlini, G. F. R., de Florian, D., & Rodrigo, G. (2015). Polarized triple-collinear splitting functions at NLO for processes with photons. J. High Energy Phys., 03(3), 021–30pp.
Abstract: We compute the polarized splitting functions in the triple collinear limit at next-to-leading order accuracy (NLO) in the strong coupling alpha(S), for the splitting processes gamma -> qq gamma, gamma -> qqg and g -> qq gamma. The divergent structure of each splitting function was compared to the predicted behaviour according to Catani's formula. The results obtained in this paper are compatible with the unpolarized splitting functions computed in a previous article. Explicit results for NLO corrections are presented in the context of conventional dimensional regularization (CDR).
|
Sborlini, G. F. R., de Florian, D., & Rodrigo, G. (2014). Double collinear splitting amplitudes at next-to-leading order. J. High Energy Phys., 01(1), 018–55pp.
Abstract: We compute the next-to-leading order (NLO) QCD corrections to the 1 -> 2 splitting amplitudes in different dimensional regularization (DREG) schemes. Besides recovering previously known results, we explore new DREG schemes and analyze their consistency by comparing the divergent structure with the expected behavior predicted by Catani's formula. Through the introduction of scalar-gluons, we show the relation among splittings matrices computed using different schemes. Also, we extended this analysis to cover the double collinear limit of scattering amplitudes in the context of QCD+QED.
|
Saul-Sala, E., Sobczyk, J. E., Rafi Alam, M., Alvarez-Ruso, L., & Nieves, J. (2021). Weak kaon production off the nucleon and Watson's theorem. Phys. Lett. B, 817, 136349–7pp.
Abstract: We have improved the tree-level model of Ref.[1] for weak production of kaons off nucleons by partially restoring unitarity. This is achieved by imposing Watson's theorem to the dominant vector and axial-vector contributions in appropriate angular momentum and isospin quantum number sectors. The observable consequences of this procedure are investigated.
|
Mantovani Sarti, V., & Vento, V. (2014). The half-skyrmion phase in a chiral-quark model. Phys. Lett. B, 728, 323–327.
Abstract: The Chiral Dilaton Model, where baryons arise as non-topological solitons built from the interaction of quarks and chiral mesons, shows in the high density low temperature regime a two phase scenario in the nuclear matter phase diagram. Dense soliton matter described by the Wigner-Seitz approximation generates a periodic potential in terms of the sigma and pion fields that leads to the formation of a band structure. The analysis up to three times nuclear matter density shows that soliton matter undergoes two separate phase transitions: a delocalization of the baryon number density leading to B = 1/2 structures, as in skyrmion matter, at moderate densities, and quark deconfinement at larger densities. This description fits well into the so-called quarkyonic phase where, before deconfinement, nuclear matter should undergo structural changes involving the restoration of fundamental symmetries of QCD.
|
Navarro, J., Mateo, D., Barranco, M., & Sarsa, A. (2012). Mg impurity in helium droplets. J. Chem. Phys., 136(5), 054301–9pp.
Abstract: Within the diffusion Monte Carlo approach, we have determined the structure of isotopically pure and mixed helium droplets doped with one magnesium atom. For pure He-4 clusters, our results confirm those of Mella et al. [J. Chem. Phys. 123, 054328 (2005)1 that the impurity experiences a transition from a surface to a bulk location as the number of helium atoms in the droplet increases. Contrarily, for pure He-3 clusters Mg resides in the bulk of the droplet due to the smaller surface tension of this isotope. Results for mixed droplets are presented. We have also obtained the absorption spectrum of Mg around the 3s3p P-1(1) <- 3s(2) S-1(0) transition.
|
Santos, A. C. L., Muniz, C. R., & Maluf, R. V. (2023). Yang-Mills Casimir wormholes in D=2+1. J. Cosmol. Astropart. Phys., 09(9), 022–24pp.
Abstract: This work presents new three-dimensional traversable wormhole solutions sourced by the Casimir density and pressures related to the quantum vacuum fluctuations in Yang-Mills (Y-M) theory. We begin by analyzing the noninteracting Y-M Casimir wormholes, initially considering an arbitrary state parameter omega and determine a simple constant wormhole shape function. Next, we introduce a new methodology for deforming the state parameter to find well-behaved redshift functions. The wormhole can be interpreted as a legitimate Casimir wormhole with an expected average state parameter of omega = 2. Then, we investigate the wormhole curvature properties, energy conditions, and stability. Furthermore, we discover a novel family of traversable wormhole solutions sourced by the quantum vacuum fluctuations of interacting Yang-Mills fields with a more complex shape function. Deforming the effective state parameter similarly, we obtain well-behaved redshift functions and traversable wormhole solutions. Finally, we examine the energy conditions and stability of solutions in the interacting scenario and compare to the noninteracting case.
|
Sandner, S., Hernandez, P., Lopez-Pavon, J., & Rius, N. (2023). Predicting the baryon asymmetry with degenerate right-handed neutrinos. J. High Energy Phys., 11(11), 153–37pp.
Abstract: We consider the generation of a baryon asymmetry in an extension of the Standard Model with two singlet Majorana fermions that are degenerate above the electroweak phase transition. The model can explain neutrino masses as well as the observed matter-antimatter asymmetry, for masses of the heavy singlets below the electroweak scale. The only physical CP violating phases in the model are those in the PMNS mixing matrix, i.e. the Dirac phase and a Majorana phase that enter light neutrino observables. We present an accurate analytic approximation for the baryon asymmetry in terms of CP flavour invariants, and derive the correlations with neutrino observables. We demonstrate that the measurement of CP violation in neutrino oscillations as well as the mixings of the heavy neutral leptons with the electron, muon and tau flavours suffice to pin down the matter-antimatter asymmetry from laboratory measurements.
|
Sanchis-Lozano, M. A., Sarkisyan-Grinbaum, E. K., & Moreno-Picot, S. (2016). Searching for hidden sector in multiparticle production at LHC. Phys. Lett. B, 754, 353–359.
Abstract: We study the impact of a hidden sector beyond the Standard Model, e.g. a Hidden Valley model, on factorial moments and cumulants of multiplicity distributions in multiparticle production with a special emphasis on the prospects for LHC results.
|
Sanchis-Lozano, M. A., & Sarkisyan-Grinbaum, E. (2017). A correlated-cluster model and the ridge phenomenon in hadron-hadron collisions. Phys. Lett. B, 766, 170–176.
Abstract: A study of the near-side ridge phenomenon in hadron-hadron collisions based on a cluster picture of multiparticle production is presented. The near-side ridge effect is shown to have a natural explanation in this context provided that clusters are produced in a correlated manner in the collision transverse plane.
|
Sanchis-Lozano, M. A., & Sarkisyan-Grinbaum, E. K. (2018). Searching for new physics with three-particle correlations in pp collisions at the LHC. Phys. Lett. B, 781, 505–509.
Abstract: New phenomena involving pseudorapidity and azimuthal correlations among final-state particles in pp collisions at the LHC can hint at the existence of hidden sectors beyond the Standard Model. In this paper we rely on a correlated-cluster picture of multiparticle production, which was shown to account for the ridge effect, to assess the effect of a hidden sector on three-particle correlations concluding that there is a potential signature of new physics that can be directly tested by experiments using well-known techniques.
|