Cirigliano, V., Gisbert, H., Pich, A., & Rodriguez-Sanchez, A. (2020). Isospin-violating contributions to epsilon '/epsilon. J. High Energy Phys., 02(2), 032–44pp.
Abstract: The known isospin-breaking contributions to the K -> pi pi amplitudes are reanalyzed, taking into account our current understanding of the quark masses and the relevant non-perturbative inputs. We present a complete numerical reappraisal of the direct CP-violating ratio is an element of(')/is an element of, where these corrections play a quite significant role. We obtain the Standard Model prediction Re (is an element of(')/is an element of) = (14 +/- 5) <bold> </bold>10(-4), which is in very good agreement with the measured ratio. The uncertainty, which has been estimated conservatively, is dominated by our current ignorance about 1/N-C-suppressed contributions to some relevant chiral-perturbation-theory low-energy constants.
|
Caron, S., Dobreva, N., Ferrer Sanchez, A., Martin-Guerrero, J. D., Odyurt, U., Ruiz de Austri, R., et al. (2025). Trackformers: in search of transformer-based particle tracking for the high-luminosity LHC era. Eur. Phys. J. C, 85(4), 460–20pp.
Abstract: High-Energy Physics experiments are facing a multi-fold data increase with every new iteration. This is certainly the case for the upcoming High-Luminosity LHC upgrade. Such increased data processing requirements forces revisions to almost every step of the data processing pipeline. One such step in need of an overhaul is the task of particle track reconstruction, a.k.a., tracking. A Machine Learning-assisted solution is expected to provide significant improvements, since the most time-consuming step in tracking is the assignment of hits to particles or track candidates. This is the topic of this paper. We take inspiration from large language models. As such, we consider two approaches: the prediction of the next word in a sentence (next hit point in a track), as well as the one-shot prediction of all hits within an event. In an extensive design effort, we have experimented with three models based on the Transformer architecture and one model based on the U-Net architecture, performing track association predictions for collision event hit points. In our evaluation, we consider a spectrum of simple to complex representations of the problem, eliminating designs with lower metrics early on. We report extensive results, covering both prediction accuracy (score) and computational performance. We have made use of the REDVID simulation framework, as well as reductions applied to the TrackML data set, to compose five data sets from simple to complex, for our experiments. The results highlight distinct advantages among different designs in terms of prediction accuracy and computational performance, demonstrating the efficiency of our methodology. Most importantly, the results show the viability of a one-shot encoder-classifier based Transformer solution as a practical approach for the task of tracking.
|
Botella, F. J., Branco, G. C., Nebot, M., & Sanchez, A. (2015). Mixing asymmetries in B meson systems, the D0 like-sign dimuon asymmetry, and generic new physics. Phys. Rev. D, 91(3), 035013–14pp.
Abstract: The measurement of a large like-sign dimuon asymmetry A(SL)(b) by the D0 experiment at the Tevatron departs noticeably from Standard Model (SM) expectations and it may be interpreted as a hint of physics beyond the Standard Model contributing to Delta B not equal 0 transitions. In this work we analyze how the natural suppression of A(SL)(b) in the SM can be circumvented by new physics. We consider generic Standard Model extensions where the charged current mixing matrix is enlarged with respect to the usual 3 x 3 unitary Cabibbo-Kobayashi-Maskawa matrix, and show how, within this framework, a significant enhancement over Standard Model expectations for Ab SL is easily reachable through enhancements of the semileptonic asymmetries A(SL)(d) and A(SL)(s) of both B-d(0)- (B) over bar (0)(d) and B-s(0)- (B) over bar (0)(s) systems. Despite being insufficient to reproduce the D0 measurement, such deviations from SM expectations may be probed by the LHCb experiment.
|
Bijnens, J., Hermansson-Truedsson, N., & Rodriguez-Sanchez, A. (2025). Constraints on the hadronic light-by-light tensor in corner kinematics for the muon g-2. J. High Energy Phys., 03(3), 094–36pp.
Abstract: The dispersive approach to the hadronic light-by-light contribution to the muon g – 2 involves an integral over three virtual photon momenta appearing in the light-by-light tensor. Building upon previous works, we systematically derive short-distance constraints in the region where two momenta are large compared to the third, the so-called Melnikov-Vainshtein or corner region. We include gluonic corrections for the different scalar functions appearing in the Lorentz decomposition of the underlying tensor, and explicitly check analytic agreement with alternative operator product expansions in overlapping regimes of validity. A very strong pattern of cancellations is observed for the final g – 2 integrand. The last observation suggests that a very compact expression only containing the axial current form factors can provide a good approximation of the corner region of the hadronic light-by-light tensor.
|
Manera, M., Scoccimarro, R., Percival, W. J., Samushia, L., McBride, C. K., Ross, A. J., et al. (2013). The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: a large sample of mock galaxy catalogues. Mon. Not. Roy. Astron. Soc., 428(2), 1036–1054.
Abstract: We present a fast method for producing mock galaxy catalogues that can be used to compute the covariance of large-scale clustering measurements and test analysis techniques. Our method populates a second-order Lagrangian perturbation theory (2LPT) matter field, where we calibrate masses of dark matter haloes by detailed comparisons with N-body simulations. We demonstrate that the clustering of haloes is recovered at similar to 10 per cent accuracy. We populate haloes with mock galaxies using a halo occupation distribution (HOD) prescription, which has been calibrated to reproduce the clustering measurements on scales between 30 and 80 h(-1) Mpc. We compare the sample covariance matrix from our mocks with analytic estimates, and discuss differences. We have used this method to make catalogues corresponding to Data Release 9 of the Baryon Oscillation Spectroscopic Survey (BOSS), producing 600 mock catalogues of the 'CMASS' galaxy sample. These mocks have enabled detailed tests of methods and errors, and have formed an integral part of companion analyses of these galaxy data.
|