Unbehaun, T. et al(C. T. A. C. and K. M. 3N. T. C.), Alves Garre, S., Calvo, D., Carretero, V., Cecchini, V., Garcia Soto, A., et al. (2024). Prospects for combined analyses of hadronic emission from γ-ray sources in the Milky Way with CTA and KM3NeT. Eur. Phys. J. C, 84(2), 112–19pp.
Abstract: The Cherenkov Telescope Array and the KM3NeT neutrino telescopes are major upcoming facilities in the fields of gamma-ray and neutrino astronomy, respectively. Possible simultaneous production of gamma rays and neutrinos in astrophysical accelerators of cosmic-ray nuclei motivates a combination of their data. We assess the potential of a combined analysis of CTA and KM3NeT data to determine the contribution of hadronic emission processes in known Galactic gamma-ray emitters, comparing this result to the cases of two separate analyses. In doing so, we demonstrate the capability of GAMMAPY, an open-source software package for the analysis of gamma-ray data, to also process data from neutrino telescopes. For a selection of prototypical gamma-ray sources within our Galaxy, we obtain models for primary proton and electron spectra in the hadronic and leptonic emission scenario, respectively, by fitting published gamma-ray spectra. Using these models and instrument response functions for both detectors, we employ the GAMMAPY package to generate pseudo data sets, where we assume 200 h of CTA observations and 10 years of KM3NeT detector operation. We then apply a three-dimensional binned likelihood analysis to these data sets, separately for each instrument and jointly for both. We find that the largest benefit of the combined analysis lies in the possibility of a consistent modelling of the gamma-ray and neutrino emission. Assuming a purely leptonic scenario as input, we obtain, for the most favourable source, an average expected 68% credible interval that constrains the contribution of hadronic processes to the observed gamma-ray emission to below 15%.
|
AMON Team, H. A. W. C. and I. C. C.(A. S., H.A. et al), & Salesa Greus, F. (2021). Multimessenger Gamma-Ray and Neutrino Coincidence Alerts Using HAWC and IceCube Subthreshold Data. Astrophys. J., 906(1), 63–10pp.
Abstract: The High Altitude Water Cerenkov (HAWC) and IceCube observatories, through the Astrophysical Multimessenger Observatory Network (AMON) framework, have developed a multimessenger joint search for extragalactic astrophysical sources. This analysis looks for sources that emit both cosmic neutrinos and gamma rays that are produced in photohadronic or hadronic interactions. The AMON system is running continuously, receiving subthreshold data (i.e., data that are not suited on their own to do astrophysical searches) from HAWC and IceCube, and combining them in real time. Here we present the analysis algorithm, as well as results from archival data collected between 2015 June and 2018 August, with a total live time of 3.0 yr. During this period we found two coincident events that have a false-alarm rate (FAR) of <1 coincidence yr(-1), consistent with the background expectations. The real-time implementation of the analysis in the AMON system began on 2019 November 20 and issues alerts to the community through the Gamma-ray Coordinates Network with an FAR threshold of <4 coincidences yr(-1).
|
AMON Team, A. N. T. A. R. E. S. and H. A. W. C. C.(A. S., H.A. et al), Alves Garres, S., Calvo, D., Carretero, V., Gozzini, R., Hernandez-Rey, J. J., et al. (2023). Search for Gamma-Ray and Neutrino Coincidences Using HAWC and ANTARES Data. Astrophys. J., 944(2), 166–9pp.
Abstract: In the quest for high-energy neutrino sources, the Astrophysical Multimessenger Observatory Network has implemented a new search by combining data from the High Altitude Water Cherenkov (HAWC) Observatory and the Astronomy with a Neutrino Telescope and Abyss environmental RESearch (ANTARES) neutrino telescope. Using the same analysis strategy as in a previous detector combination of HAWC and IceCube data, we perform a search for coincidences in HAWC and ANTARES events that are below the threshold for sending public alerts in each individual detector. Data were collected between 2015 July and 2020 February with a live time of 4.39 yr. Over this time period, three coincident events with an estimated false-alarm rate of <1 coincidence per year were found. This number is consistent with background expectations.
|
Salesa Greus, F., & Sanchez Losa, A. (2021). Multimessenger Astronomy with Neutrinos. Universe, 7(11), 397–11pp.
Abstract: Multimessenger astronomy is arguably the branch of the astroparticle physics field that has seen the most significant developments in recent years. In this manuscript, we will review the state-of-the-art, the recent observations, and the prospects and challenges for the near future. We will give special emphasis to the observation carried out with neutrino telescopes.
|
ANTARES Collaboration(Reeb, N. et al), Alves, S., Carretero, V., Colomer, M., Hernandez-Rey, J. J., Khan-Chowdhury, N. R., et al. (2023). Studying bioluminescence flashes with the ANTARES deep-sea neutrino telescope. Limnol. Oceanogr. Meth., 21(11), 734–760.
Abstract: We develop a novel technique to exploit the extensive data sets provided by underwater neutrino telescopes to gain information on bioluminescence in the deep sea. The passive nature of the telescopes gives us the unique opportunity to infer information on bioluminescent organisms without actively interfering with them. We propose a statistical method that allows us to reconstruct the light emission of individual organisms, as well as their location and movement. A mathematical model is built to describe the measurement process of underwater neutrino telescopes and the signal generation of the biological organisms. The Metric Gaussian Variational Inference algorithm is used to reconstruct the model parameters using photon counts recorded by photomultiplier tubes. We apply this method to synthetic data sets and data collected by the ANTARES neutrino telescope. The telescope is located 40 km off the French coast and fixed to the sea floor at a depth of 2475 m. The runs with synthetic data reveal that we can model the emitted bioluminescent flashes of the organisms. Furthermore, we find that the spatial resolution of the localization of light sources highly depends on the configuration of the telescope. Precise measurements of the efficiencies of the detectors and the attenuation length of the water are crucial to reconstruct the light emission. Finally, the application to ANTARES data reveals the first localizations of bioluminescent organisms using neutrino telescope data.
|