toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Courtoy, A.; Noguera, S.; Scopetta, S. url  doi
openurl 
  Title Two-current correlations in the pion in the Nambu and Jona-Lasinio model Type Journal Article
  Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 80 Issue 10 Pages 909 - 11pp  
  Keywords  
  Abstract We present an analysis of two-current correlations for the pion in the Nambu-Jona-Lasinio model, with Pauli-Villars regularization. We provide explicit expressions in momentum space for two-current correlations corresponding to the zeroth component of the vector Dirac bilinear in the quark vertices, which has been evaluated on the lattice, thinking to applications in a high energy framework, as a step towards the calculation of pion double parton distributions. The numerical results show a remarkable qualitative agreement with recent lattice data. The factorization approximation into one-body currents is discussed based on previous evaluation of the relevant low energy matrix elements in the Nambu-Jona-Lasinio model, confirming the lattice result.  
  Address (up) [Courtoy, Aurore] Univ Nacl Autonoma Mexico, Inst Fis, Apartado Postal 20-364, Mexico City 01000, DF, Mexico, Email: aurore@fisica.unam.mx;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000576966100003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4564  
Permanent link to this record
 

 
Author Coves, A.; Maestre, H.; Archiles, R.; Andres, M.V.; Gimeno, B. doi  openurl
  Title Surface-Impedance Formulation for Hollow-Core Waveguides Based on Subwavelength Gratings Type Journal Article
  Year 2022 Publication IEEE Access Abbreviated Journal IEEE Access  
  Volume 10 Issue Pages 18843-18854  
  Keywords Electromagnetic waveguides; Optical waveguides; Planar waveguides; Gratings; Surface waves; Surface impedance; Optical surface waves; Surface impedance; hollow-core waveguide; surface-relief grating  
  Abstract A rigorous Surface Impedance (SI) formulation for planar waveguides is presented. This modal technique splits the modal analysis of the waveguide in two steps. First, we obtain the modes characteristic equations as a function of the SI and, second, we need to obtain the surface impedance values using either analytical or numerical methods. We validate the technique by comparison with well-known analytical cases: the parallel-plate waveguide with losses and the dielectric slab waveguide. Then, we analyze an optical hollow-core waveguide defined by two high-contrast subwavelength gratings validating our results by comparison with reported values. Finally, we show the potential of our formulation with the analysis of a THz hollow-core waveguide defined by two surface-relief subwavelength gratings, including material losses in our formulation.  
  Address (up) [Coves, Angela; Maestre, Haroldo] Univ Miguel Hernandez Elche, Dept Commun Engn I3E, Elche 03202, Spain, Email: angela.coves@umh.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-3536 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000760714900001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5139  
Permanent link to this record
 

 
Author Cranmer, K. et al; Sanz, V. url  doi
openurl 
  Title Publishing statistical models: Getting the most out of particle physics experiments Type Journal Article
  Year 2022 Publication Scipost Physics Abbreviated Journal SciPost Phys.  
  Volume 12 Issue 1 Pages 037 - 55pp  
  Keywords  
  Abstract The statistical models used to derive the results of experimental analyses are of incredible scientific value and are essential information for analysis preservation and reuse. In this paper, we make the scientific case for systematically publishing the full statistical models and discuss the technical developments that make this practical. By means of a variety of physics cases – including parton distribution functions, Higgs boson measurements, effective field theory interpretations, direct searches for new physics, heavy flavor physics, direct dark matter detection, world averages, and beyond the Standard Model global fits – we illustrate how detailed information on the statistical modelling can enhance the short- and long-term impact of experimental results.  
  Address (up) [Cranmer, Kyle; Held, Alexander] NYU, New York, NY 10003 USA, Email: kyle.cranmer@nyu.edu;  
  Corporate Author Thesis  
  Publisher Scipost Foundation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-4653 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000807448000032 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5255  
Permanent link to this record
 

 
Author Creminelli, P.; Loayza, N.; Serra, F.; Trincherini, E.; Trombetta, L.G. url  doi
openurl 
  Title Hairy black-holes in shift-symmetric theories Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 045 - 24pp  
  Keywords Black Holes; Classical Theories of Gravity  
  Abstract Scalar hair of black holes in theories with a shift symmetry are constrained by the no-hair theorem of Hui and Nicolis, assuming spherical symmetry, time-independence of the scalar field and asymptotic flatness. The most studied counterexample is a linear coupling of the scalar with the Gauss-Bonnet invariant. However, in this case the norm of the shift-symmetry current J(2) diverges at the horizon casting doubts on whether the solution is physically sound. We show that this is not an issue since J(2) is not a scalar quantity, since J(mu) is not a diffinvariant current in the presence of Gauss-Bonnet. The same theory can be written in Horndeski form with a non-analytic function G(5)similar to log X . In this case the shift-symmetry current is diff-invariant, but contains powers of X in the denominator, so that its divergence at the horizon is again immaterial. We confirm that other hairy solutions in the presence of non-analytic Horndeski functions are pathological, featuring divergences of physical quantities as soon as one departs from time-independence and spherical symmetry. We generalise the no-hair theorem to Beyond Horndeski and DHOST theories, showing that the coupling with Gauss-Bonnet is necessary to have hair.  
  Address (up) [Creminelli, Paolo] Abdus Salaam Int Ctr Theoret Phys, Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy, Email: creminel@ictp.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000562728200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4515  
Permanent link to this record
 

 
Author Cui, Z.F.; Zhang, J.L.; Binosi, D.; De Soto, F.; Mezrag, C.; Papavassiliou, J.; Roberts, C.D.; Rodriguez-Quintero, J.; Segovia, J.; Zafeiropoulos, S. url  doi
openurl 
  Title Effective charge from lattice QCD Type Journal Article
  Year 2020 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C  
  Volume 44 Issue 8 Pages 083102 - 10pp  
  Keywords running coupling; quantum chromodynamics; Dyson-Schwinger equations; lattice field theory; emergence of mass; confinement  
  Abstract Using lattice configurations for quantum chromodynamics (QCD) generated with three domain-wall fermions at a physical pion mass, we obtain a parameter-free prediction of QCD 's renormalisation-group-invariant process-independent effective charge, (alpha) over cap (k(2)). Owing to the dynamical breaking of scale invariance, evident in the emergence of a gluon mass-scale, m(0) = 0.43(1) GeV, this coupling saturates at infrared momenta: (alpha) over cap/pi = 0.97(4). Amongst other things: (alpha) over cap (k(2)) is almost identical to the process-dependent (PD) effective charge defined via the Bjorken sum rule; and also that PD charge which, employed in the one-loop evolution equations, delivers agreement between pion parton distribution functions computed at the hadronic scale and experiment. The diversity of unifying roles played by (alpha) over cap (k(2)) suggests that it is a strong candidate for that object which represents the interaction strength in QCD at any given momentum scale; and its properties support a conclusion that QCD is a mathematically well-defined quantum field theory in four dimensions.  
  Address (up) [Cui, Z-F; Roberts, C. D.] Nanjing Univ, Sch Phys, Nanjing 210093, Peoples R China, Email: cdroberts@nju.edu.cn;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-1137 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000557419600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4495  
Permanent link to this record
 

 
Author Cui, Z.F.; Ding, M.; Morgado, J.M.; Raya, K.; Binosi, D.; Chang, L.; Papavassiliou, J.; Roberts, C.D.; Rodriguez-Quintero, J.; Schmidt, S.M. url  doi
openurl 
  Title Concerning pion parton distributions Type Journal Article
  Year 2022 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 58 Issue 1 Pages 10 - 14pp  
  Keywords  
  Abstract Analyses of the pion valence-quark distribution function (DF), u(pi) (x; sigma), which explicitly incorporate the behaviour of the pion wave function prescribed by quantum chromodynamics (QCD), predict u(pi) (x similar or equal to 1; sigma) similar to (1 – x)(beta(sigma)), beta(sigma greater than or similar to m(p)) > 2, where mp is the proton mass. Nevertheless, more than forty years after the first experiment to collect data suitable for extracting the x similar or equal to 1 behaviour of up, the empirical status remains uncertain because some methods used to fit existing data return a result for up that violates this constraint. Such disagreement entails one of the following conclusions: the analysis concerned is incomplete; not all data being considered are a true expression of qualities intrinsic to the pion; or QCD, as it is currently understood, is not the theory of strong interactions. New, precise data are necessary before a final conclusion is possible. In developing these positions, we exploit a single proposition, viz. there is an effective charge which defines an evolution scheme for parton DFs that is all-orders exact. This proposition has numerous corollaries, which can be used to test the character of any DF, whether fitted or calculated.  
  Address (up) [Cui, Z. -F.; Roberts, C. D.] Nanjing Univ, Sch Phys, Nanjing 210093, Jiangsu, Peoples R China, Email: binosi@ectstar.eu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000746605900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5083  
Permanent link to this record
 

 
Author Curtin, D. et al; Hirsch, M. url  doi
openurl 
  Title Long-lived particles at the energy frontier: the MATHUSLA physics case Type Journal Article
  Year 2019 Publication Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.  
  Volume 82 Issue 11 Pages 116201 - 133pp  
  Keywords Large Hadron Collider; long-lived particles; hierarchy problem; dark matter; baryogenesis; neutrinos; simplified models  
  Abstract We examine the theoretical motivations for long-lived particle (LLP) signals at the LHC in a comprehensive survey of standard model (SM) extensions. LLPs are a common prediction of a wide range of theories that address unsolved fundamental mysteries such as naturalness, dark matter, baryogenesis and neutrino masses, and represent a natural and generic possibility for physics beyond the SM (BSM). In most cases the LLP lifetime can be treated as a free parameter from the μm scale up to the Big Bang Nucleosynthesis limit of similar to 10(7) m. Neutral LLPs with lifetimes above similar to 100 m are particularly difficult to probe, as the sensitivity of the LHC main detectors is limited by challenging backgrounds, triggers, and small acceptances. MATHUSLA is a proposal for a minimally instrumented, large-volume surface detector near ATLAS or CMS. It would search for neutral LLPs produced in HL-LHC collisions by reconstructing displaced vertices (DVs) in a low-background environment, extending the sensitivity of the main detectors by orders of magnitude in the long-lifetime regime. We study the LLP physics opportunities afforded by a MATHUSLA-like detector at the HL-LHC, assuming backgrounds can be rejected as expected. We develop a model-independent approach to describe the sensitivity of MATHUSLA to BSM LLP signals, and compare it to DV and missing energy searches at ATLAS or CMS. We then explore the BSM motivations for LLPs in considerable detail, presenting a large number of new sensitivity studies. While our discussion is especially oriented towards the long-lifetime regime at MATHUSLA, this survey underlines the importance of a varied LLP search program at the LHC in general. By synthesizing these results into a general discussion of the top-down and bottom-up motivations for LLP searches, it is our aim to demonstrate the exceptional strength and breadth of the physics case for the construction of the MATHUSLA detector.  
  Address (up) [Curtin, David] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada, Email: dcurtin@physics.utoronto.ca  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4885 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000499698000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4215  
Permanent link to this record
 

 
Author Alvarez, M.; Cantero, J.; Czakon, M.; Llorente, J.; Mitov, A.; Poncelet, R. url  doi
openurl 
  Title NNLO QCD corrections to event shapes at the LHC Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 129 - 24pp  
  Keywords Higher-Order Perturbative Calculations; Specific QCD Phenomenology  
  Abstract In this work we perform the first ever calculation of jet event shapes at hadron colliders at next-to-next-to leading order (NNLO) in QCD. The inclusion of higher order corrections removes the shape difference observed between data and next-to-leading order predictions. The theory uncertainty at NNLO is comparable to, or slightly larger than, existing measurements. Except for narrow kinematical ranges where all-order resummation becomes important, the NNLO predictions for the event shapes considered in the present work are reliable. As a prime application of the results derived in this work we provide a detailed investigation of the prospects for the precision determination of the strong coupling constant and its running through TeV scales from LHC data.  
  Address (up) [Czakon, Michal] Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany, Email: manuel.alvarez.estevez@cern.ch;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000992064600003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5560  
Permanent link to this record
 

 
Author D'Auria, G. et al; Gonzalez-Iglesias, D.; Gimeno, B.; Pereira, D.E. doi  openurl
  Title The CompactLight Design Study Type Journal Article
  Year 2024 Publication European Physical Journal-Special Topics Abbreviated Journal Eur. Phys. J.-Spec. Top.  
  Volume Issue Pages 1-208  
  Keywords  
  Abstract CompactLight is a Design Study funded by the European Union under the Horizon 2020 research and innovation funding programme, with Grant Agreement No. 777431. CompactLight was conducted by an International Collaboration of 23 international laboratories and academic institutions, three private companies, and five third parties. The project, which started in January 2018 with a duration of 48 months, aimed to design an innovative, compact, and cost-effective hard X-ray FEL facility complemented by a soft X-ray source to pave the road for future compact accelerator-based facilities. The result is an accelerator that can be operated at up to 1 kHz pulse repetition rate, beyond today's state of the art, using the latest concepts for high brightness electron photoinjectors, very high gradient accelerating structures in X-band, and novel short-period undulators. In this report, we summarize the main deliverable of the project: the CompactLight Conceptual Design Report, which overviews the current status of the design and addresses the main technological challenges.  
  Address (up) [D'Auria, G.; Danailov, M.; Mitri, S. Di; Ferianis, M.; Gioppo, R.; Rochow, R.; Tabacco, C.; Zangrando, M.] Elettra Sincrotrone Trieste SCpA, AREA Sci Pk, I-34149 Trieste, Italy, Email: gerardo.dauria@elettra.eu  
  Corporate Author Thesis  
  Publisher Springer Heidelberg Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1951-6355 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001198683900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6122  
Permanent link to this record
 

 
Author D'Eramo, F.; Di Valentino, E.; Giare, W.; Hajkarim, F.; Melchiorri, A.; Mena, O.; Renzi, F.; Yun, S. url  doi
openurl 
  Title Cosmological bound on the QCD axion mass, redux Type Journal Article
  Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 09 Issue 9 Pages 022 - 35pp  
  Keywords axions; cosmology of theories beyond the SM; cosmological neutrinos; neutrino masses from cosmology  
  Abstract We revisit the joint constraints in the mixed hot dark matter scenario in which both thermally produced QCD axions and relic neutrinos are present. Upon recomputing the cosmological axion abundance via recent advances in the literature, we improve the state-of-the-art analyses and provide updated bounds on axion and neutrino masses. By avoiding approximate methods, such as the instantaneous decoupling approximation, and limitations due to the limited validity of the perturbative approach in QCD that forced to artificially divide the constraints from the axion-pion and the axion-gluon production channels, we find robust and self-consistent limits. We investigate the two most popular axion frameworks: KSVZ and DFSZ. From Big Bang Nucleosynthesis (BBN) light element abundances data we find for the KSVZ axion Delta N-eff < 0.31 and an axion mass bound m(a) < 0.53 eV (i.e., a bound on the axion decay constant f(a) > 1.07 x 10(7) GeV) both at 95% CL. These BBN bounds are improved to Delta N-eff < 0.14 and m(a) < 0.16 eV (f(a) > 3.56 x 10(7) GeV) if a prior on the baryon energy density from Cosmic Microwave Background (CMB) data is assumed. When instead considering cosmological observations from the CMB temperature, polarization and lensing from the Planck satellite combined with large scale structure data we find Delta N-eff < 0.23, m(a) < 0.28 eV (f(a) > 2.02 x 10(7) GeV) and Sigma m(nu) < 0.16 eV at 95% CL. This corresponds approximately to a factor of 5 improvement in the axion mass bound with respect to the existing limits. Very similar results are obtained for the DFSZ axion. We also forecast upcoming observations from future CMB and galaxy surveys, showing that they could reach percent level errors for m(a) similar to 1 eV.  
  Address (up) [D'Eramo, Francesco; Hajkarim, Fazlollah; Yun, Seokhoon] Univ Padua, Dipartimento Fis & Astron, Via Marzolo 8, I-35131 Padua, Italy, Email: francesco.deramo@pd.infn.it;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000863296000010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5383  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva