Nieves, J., Ruiz Simo, I., & Vicente Vacas, M. J. (2012). The nucleon axial mass and the MiniBooNE quasielastic neutrino-nucleus scattering problem. Phys. Lett. B, 707(1), 72–75.
Abstract: The charged-current double differential neutrino cross section, measured by the MiniBooNE Collaboration, has been analyzed using a microscopical model that accounts for, among other nuclear effects, long range nuclear (RPA) correlations and multinucleon scattering. We find that MiniBooNE data are fully compatible with the world average of the nucleon axial mass in contrast with several previous analyses which have suggested an anomalously large value. We also discuss the reliability of the algorithm used to estimate the neutrino energy.
|
Bernabeu, J., Botella, F. J., & Nebot, M. (2014). Novel T-Violation observable open to any pair of decay channels at meson factories. Phys. Lett. B, 728, 95–98.
Abstract: Quantum entanglement between the two neutral mesons produced in meson factories has allowed the first indisputable direct observation of Time Reversal Violation in the time evolution of the neutral meson between the two decays. The exceptional meson transitions are directly connected to semileptonic and CP eigenstate decay channels. The possibility of extending the observable asymmetries to more decay channels confronts the problem of the “orthogonality condition”, which can be stated with this tonguetwister: Given a decay channel f, which is the decay channel f' such that the meson state not decaying to f is orthogonal to the meson state not decaying to f? In this Letter we propose an alternative T-Violation asymmetry at meson factories which allows its opening to any pair of decay channels. Instead of searching which is the pair of decay channels associated to the T-reverse meson transition, we build an asymmetry which tags the initial states of both the Reference and the T-reverse meson transitions. This observable filters the appropriate final states by means of two measurable survival probabilities. We discuss the methodology to be followed in the analysis of the new observable and the results expected in specific examples.
|
CDF Collaboration(Aaltonen, T. et al), & Cabrera, S. (2010). Search for new color-octet vector particle decaying to t(t)over-bar in p(p)over-bar collisions at root s=1.96 TeV. Phys. Lett. B, 691(4), 183–190.
Abstract: We present the result of a search for a massive color-octet vector particle, (e.g. a massive gluon) decaying to a pair of top quarks in proton-antiproton collisions with a center-of-mass energy of 1.96 TeV. This search is based on 1.9 fb(-1) of data collected using the CDF detector during Run II of the Tevatron at Fermilab. We study t (t) over bar events in the lepton + jets channel with at least one b-tagged jet. A massive gluon is characterized by its mass, decay width, and the strength of its coupling to quarks. These parameters are determined according to the observed invariant mass distribution of top quark pairs. We set limits on the massive gluon coupling strength for masses between 400 and 800 GeV/c(2) and width-to-mass ratios between 0.05 and 0.50. The coupling strength of the hypothetical massive gluon to quarks is consistent with zero within the explored parameter space.
|
Nanova, M. et al, & Oset, E. (2012). Transparency ratio in gamma A -> eta ' A ' and the in-medium eta ' width. Phys. Lett. B, 710(4-5), 600–606.
Abstract: The photoproduction of eta'-mesons off different nuclei has been measured with the CBELSA/TAPS detector system for incident photon energies between 1500-2200 MeV. The transparency ratio has been deduced and compared to theoretical calculations describing the propagation of eta'-mesons in nuclei. The comparison indicates a width of the eta'-meson of the order of Gamma = 15-25 MeV at rho = rho(0) for an average momentum p(eta') = 1050 MeV/c, at which the eta'-meson is produced in the nuclear rest frame. The inelastic eta'N cross section is estimated to be 3-10 mb. Parameterizing the photoproduction cross section of eta'-mesons by sigma(A) = sigma(0)A(alpha), a value of alpha = 0.84 +/- 0.03 has been deduced.
|
Nagahiro, H., Hirenzaki, S., Oset, E., & Ramos, A. (2012). eta '-Nucleus optical potential and possible eta ' bound states. Phys. Lett. B, 709(1-2), 87–92.
Abstract: Starting from a recent model of the eta'N interaction, we evaluate the eta'-nucleus optical potential, including the contribution of lowest order in density, t rho/2m(eta'), together with the second-order terms accounting for eta' absorption by two nucleons. We also calculate the formation cross section of the eta' bound states from (pi(+), p) reactions on nuclei. The eta'-nucleus potential suffers from uncertainties tied to the poorly known eta'N interaction, which can be partially constrained by the experimental modulus of the eta'N scattering length and/or the recently measured transparency ratios in eta' nuclear photoproduction. Assuming an attractive interaction and taking the claimed experimental value vertical bar a(eta'N)vertical bar = 0.1 fm, we obtain an eta' optical potential in nuclear matter at saturation density of V eta' = -(8.7 + 1.8i) MeV, not attractive enough to produce eta' bound states in light nuclei. Larger values of the scattering length give rise to deeper optical potentials, with moderate enough imaginary parts. For a value vertical bar a(eta'N)vertical bar = 0.3 fm, which can still be considered to lie within the uncertainties of the experimental constraints, the spectra of light and medium nuclei show clear structures associated to eta'-nuclear bound states and to threshold enhancements in the unbound region.
|