toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dawson, K.S. et al; de Putter, R.; Mena, O. url  doi
openurl 
  Title The Baryon Oscillation Spectroscopic Survey of SDSS-III Type Journal Article
  Year 2013 Publication Astronomical Journal Abbreviated Journal Astron. J.  
  Volume 145 Issue 1 Pages 10 - 41pp  
  Keywords cosmology: observations; surveys  
  Abstract The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large-scale structure. BOSS uses 1.5 million luminous galaxies as faint as i = 19.9 over 10,000 deg(2) to measure BAO to redshifts z < 0.7. Observations of neutral hydrogen in the Ly alpha forest in more than 150,000 quasar spectra (g < 22) will constrain BAO over the redshift range 2.15 < z < 3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Ly alpha forest and a strong detection from the Data Release 9 data set of the BAO in the clustering of massive galaxies at an effective redshift z = 0.57. We project that BOSS will yield measurements of the angular diameter distance d(A) to an accuracy of 1.0% at redshifts z = 0.3 and z = 0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Ly alpha forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D-A(z) and H-1(z) parameters to an accuracy of 1.9% at z similar to 2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.  
  Address (down) [Dawson, Kyle S.; Ahn, Christopher P.; Bolton, Adam S.; Brown, Peter J.; Brownstein, Joel R.; Harris, David W.; Montero-Dorta, Antonio D.; Olmstead, Matthew D.; Shu, Yiping; Zheng, Zheng] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA, Email: kdawson@astro.utah.edu  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-6256 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000312251100010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1266  
Permanent link to this record
 

 
Author D'Eramo, F.; Di Valentino, E.; Giare, W.; Hajkarim, F.; Melchiorri, A.; Mena, O.; Renzi, F.; Yun, S. url  doi
openurl 
  Title Cosmological bound on the QCD axion mass, redux Type Journal Article
  Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 09 Issue 9 Pages 022 - 35pp  
  Keywords axions; cosmology of theories beyond the SM; cosmological neutrinos; neutrino masses from cosmology  
  Abstract We revisit the joint constraints in the mixed hot dark matter scenario in which both thermally produced QCD axions and relic neutrinos are present. Upon recomputing the cosmological axion abundance via recent advances in the literature, we improve the state-of-the-art analyses and provide updated bounds on axion and neutrino masses. By avoiding approximate methods, such as the instantaneous decoupling approximation, and limitations due to the limited validity of the perturbative approach in QCD that forced to artificially divide the constraints from the axion-pion and the axion-gluon production channels, we find robust and self-consistent limits. We investigate the two most popular axion frameworks: KSVZ and DFSZ. From Big Bang Nucleosynthesis (BBN) light element abundances data we find for the KSVZ axion Delta N-eff < 0.31 and an axion mass bound m(a) < 0.53 eV (i.e., a bound on the axion decay constant f(a) > 1.07 x 10(7) GeV) both at 95% CL. These BBN bounds are improved to Delta N-eff < 0.14 and m(a) < 0.16 eV (f(a) > 3.56 x 10(7) GeV) if a prior on the baryon energy density from Cosmic Microwave Background (CMB) data is assumed. When instead considering cosmological observations from the CMB temperature, polarization and lensing from the Planck satellite combined with large scale structure data we find Delta N-eff < 0.23, m(a) < 0.28 eV (f(a) > 2.02 x 10(7) GeV) and Sigma m(nu) < 0.16 eV at 95% CL. This corresponds approximately to a factor of 5 improvement in the axion mass bound with respect to the existing limits. Very similar results are obtained for the DFSZ axion. We also forecast upcoming observations from future CMB and galaxy surveys, showing that they could reach percent level errors for m(a) similar to 1 eV.  
  Address (down) [D'Eramo, Francesco; Hajkarim, Fazlollah; Yun, Seokhoon] Univ Padua, Dipartimento Fis & Astron, Via Marzolo 8, I-35131 Padua, Italy, Email: francesco.deramo@pd.infn.it;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000863296000010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5383  
Permanent link to this record
 

 
Author Cosme, C.; Figueroa, D.G.; Loayza, N. url  doi
openurl 
  Title Gravitational wave production from preheating with trilinear interactions Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 05 Issue 5 Pages 023 - 30pp  
  Keywords physics of the early universe; primordial gravitational waves (theory); gravita-tional waves; sources; particle physics-cosmology connection  
  Abstract We investigate the production of gravitational waves (GWs) during preheating with monomial/polynomial inflationary potentials, considering a trilinear coupling & phi;x2 between a singlet inflaton & phi; and a daughter scalar field x. For sufficiently large couplings, the trilinear interaction leads to an exponential production of x particles and, as a result, a large stochastic GW background (SGWB) is generated throughout the process. We study the linear and non-linear dynamics of preheating with lattice simulations, following the production of GWs through all relevant stages. We find that large couplings lead to SGWBs with amplitudes today that can reach up to h2 �(0) GW <^> 5 & BULL; 10-9. These backgrounds are however peaked at high frequencies fp > 5 & BULL; 106 Hz, which makes them undetectable by current/planned GW observatories. As the amount of GWs produced is in any case remarkable, we discuss the prospects for probing the SGWB indirectly by using constraints on the effective number of relativistic species in the universe Neff.  
  Address (down) [Cosme, Catarina; Figueroa, Daniel G.; Loayza, Nicolas] Univ Valencia CSIC, Inst Fis Corpuscular IFIC, Parc Cientif UV,C-Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: catarina.cosme@ific.uv.es;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001038638500007 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5660  
Permanent link to this record
 

 
Author Cosme, C.; Dutra, M.; Godfrey, S.; Gray, T. url  doi
openurl 
  Title Testing freeze-in with axial and vector Z ' bosons Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 056 - 27pp  
  Keywords Beyond Standard Model; Cosmology of Theories beyond the SM  
  Abstract The freeze-in production of Feebly Interacting Massive Particle (FIMP) dark matter in the early universe is an appealing alternative to the well-known – and constrained – Weakly Interacting Massive Particle (WIMP) paradigm. Although challenging, the phenomenology of FIMP dark matter has been receiving growing attention and is possible in a few scenarios. In this work, we contribute to this endeavor by considering a Z ' portal to fermionic dark matter, with the Z ' having both vector and axial couplings and a mass ranging from MeV up to PeV. We evaluate the bounds on both freeze-in and freeze-out from direct detection, atomic parity violation, leptonic anomalous magnetic moments, neutrino-electron scattering, collider, and beam dump experiments. We show that FIMPs can already be tested by most of these experiments in a complementary way, whereas WIMPs are especially viable in the Z ' low mass regime, in addition to the Z ' resonance region. We also discuss the role of the axial couplings of Z ' in our results. We therefore hope to motivate specific realizations of this model in the context of FIMPs, as well as searches for these elusive dark matter candidates.  
  Address (down) [Cosme, Catarina; Dutra, Maira; Godfrey, Stephen; Gray, Taylor] Carleton Univ, Ottawa Carleton Inst Phys, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada, Email: catarina.cosme@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000695081900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4962  
Permanent link to this record
 

 
Author Consiglio, R.; de Salas, P.F.; Mangano, G.; Miele, G.; Pastor, S.; Pisanti, O. url  doi
openurl 
  Title PArthENoPE reloaded Type Journal Article
  Year 2018 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 233 Issue Pages 237-242  
  Keywords Primordial nucleosynthesis; Cosmology; Neutrino physics  
  Abstract We describe the main features of a new and updated version of the program PArthENoPE, which computes the abundances of light elements produced during Big Bang Nucleosynthesis. As the previous first release in 2008, the new one, PArthENoPE2.0, is publicly available and distributed from the code site, http://parthenope.na.infn.it . Apart from minor changes, which will be also detailed, the main improvements are as follows. The powerful, but not freely accessible, NAG routines have been substituted by ODEPACK libraries, without any significant loss in precision. Moreover, we have developed a Graphical User Interface (GUI) which allows a friendly use of the code and a simpler implementation of running for grids of input parameters. New Version program summary Program Title: PArthENoPE2.0 Program Files doi : http://dx.doi.org/10.17632/wvgr7d8yt9.1 Licensing provisions: GPLv3 Programming language: Fortran 77 and Python Supplementary material: User Manual available on the web page http://parthenope.na.infn.it Journal reference of previous version: Comput. Phys. Commun. 178 (2008) 956 971 Does the new version supersede the previous version?: Yes Reasons for the new version: Make the code more versatile and user friendly Summary of revisions: (1) Publicly available libraries (2) GUI for configuration Nature of problem: Computation of yields of light elements synthesized in the primordial universe Solution method: Livermore Solver for Ordinary Differential Equations (LSODE) for stiff and nonstiff systems  
  Address (down) [Consiglio, R.; Miele, G.; Pisanti, O.] Univ Napoli Federico II, Dipartimento Fis E Pancini, Via Cintia, I-80126 Naples, Italy, Email: pisanti@na.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000444667100020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3729  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva