toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author ATLAS Tile Calorimeter System (Abdallah, J. et al); Ferrer, A.; Fiorini, L.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Ruiz-Martinez, A.; Solans, C.A.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J.A. url  doi
openurl 
  Title The Laser calibration of the ATLAS Tile Calorimeter during the LHC run 1 Type Journal Article
  Year 2016 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 11 Issue Pages T10005 - 29pp  
  Keywords Detector alignment and calibration methods (lasers, sources, particle-beams); Calorimeters; Performance of High Energy Physics Detectors  
  Abstract This article describes the Laser calibration system of the ATLAS hadronic Tile Calorimeter that has been used during the run 1 of the LHC. First, the stability of the system associated readout electronics is studied. It is found to be stable with variations smaller than 0.6 %. Then, the method developed to compute the calibration constants, to correct for the variations of the gain of the calorimeter photomultipliers, is described. These constants were determined with a statistical uncertainty of 0.3 % and a systematic uncertainty of 0.2 % for the central part of the calorimeter and 0.5 % for the end-caps. Finally, the detection and correction of timing mis-configuration of the Tile Calorimeter using the Laser system are also presented.  
  Address (down) [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus, Email: calvet@in2p3.fr  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000387876400005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2860  
Permanent link to this record
 

 
Author Guadilla, V.; Algora, A.; Estienne, M.; Fallot, M.; Gelletly, W.; Porta, A.; Rigalleau, L.M.; Stutzmann, J.S. url  doi
openurl 
  Title First measurements with a new fl-electron detector for spectral shape studies Type Journal Article
  Year 2024 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 19 Issue 2 Pages P02027 - 21pp  
  Keywords Detector modelling and simulations I (interaction of radiation with matter; interaction of photons with matter; interaction of hadrons with matter; etc); Instrumentation for radioactive beams (fragmentation devices; fragment and isotope; separators incl. ISOL; isobar separators; ion and atom traps; weak-beam diagnostics; radioactive-beam ion sources); Hybrid detectors; Spectrometers  
  Abstract The shape of the electron spectrum emitted in /3 decay carries a wealth of information about nuclear structure and fundamental physics. In spite of that, few dedicated measurements have been made of /3 -spectrum shapes. In this work we present a newly developed detector for /3 electrons based on a telescope concept. A thick plastic scintillator is employed in coincidence with a thin silicon detector. The first measurements employing this detector have been carried out with mono -energetic electrons from the high-energy resolution electron -beam spectrometer at Bordeaux. Here we report on the good reproduction of the experimental spectra of mono -energetic electrons using Monte Carlo simulations. This is a crucial step for future experiments, where a detailed Monte Carlo characterization of the detector is needed to determine the shape of the /3 -electron spectra by deconvolution of the measured spectra with the response function of the detector. A chamber to contain two telescope assemblies has been designed for future /3 -decay experiments at the Ion Guide Isotope Separator On -Line facility in Jyvaskyla, aimed at improving our understanding of reactor antineutrino spectra.  
  Address (down) [Guadilla, V.; Estienne, M.; Fallot, M.; Porta, A.; Rigalleau, L. -m.; Stutzmann, J. -s.] Univ Nantes, Subatech, IMT Atlantique, CNRS,IN2P3, F-44307 Nantes, France, Email: vguadilla@fuw.edu.pl  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001181748300007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6064  
Permanent link to this record
 

 
Author Grkovski, M.; Brzezinski, K.; Cindro, V.; Clinthorne, N.H.; Kagan, H.; Lacasta, C.; Mikuz, M.; Solaz, C.; Studen, A.; Weilhammer, P.; Zontar, D. doi  openurl
  Title Evaluation of a high resolution silicon PET insert module Type Journal Article
  Year 2015 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 788 Issue Pages 86-94  
  Keywords Positron emission tomography; Silicon detectors; PET insert; Image reconstruction  
  Abstract Conventional PET systems can be augmented with additional detectors placed in close proximity of the region of interest. We developed a high resolution PET insert module to evaluate the added benefit of such a combination. The insert module consists of two back-to-back 1 mm thick silicon sensors, each segmented into 1040 1 mm(2) pads arranged in a 40 by 26 array. A set of 16 VATAGP7.1 ASICs and a custom assembled data acquisition board were used to read out the signal from the insert module. Data were acquired in slice (20) geometry with a Jaszczak phantom (rod diameters of 12-4.8 mm) Filled with F-18-FDG and the images were reconstructed with ML-EM method. Both data with full and limited angular coverage from the insert module were considered and three types of coincidence events were combined. The ratio of high-resolution data that substantially improves quality of the reconstructed image for the region near the surface of the insert module was estimated to be about 4%. Results from our previous studies suggest that such ratio could be achieved at a moderate technological expense by using an equivalent of two insert modules (an effective sensor thickness of 4 mm).  
  Address (down) [Grkovski, Milan; Cindro, Vladimir; Mikuz, Marko; Studen, Andrej; Zontar, Dejan] Jozef Stefan Inst, Ljubljana, Slovenia, Email: milan.grkovski@ijs.si  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000354870700016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2232  
Permanent link to this record
 

 
Author Gonzalez-Sevilla, S. et al; Bernabeu Verdu, J.; Civera, J.V.; Garcia, C.; Lacasta, C.; Marco, R.; Marti-Garcia, S.; Santoyo, D.; Soldevila, U. doi  openurl
  Title A double-sided silicon micro-strip Super-Module for the ATLAS Inner Detector upgrade in the High-Luminosity LHC Type Journal Article
  Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 9 Issue Pages P02003 - 37pp  
  Keywords Particle tracking detectors; Si microstrip and pad detectors; Performance of High Energy Physics Detectors  
  Abstract The ATLAS experiment is a general purpose detector aiming to fully exploit the discovery potential of the Large Hadron Collider (LHC) at CERN. It is foreseen that after several years of successful data-taking, the LHC physics programme will be extended in the so-called High-Luminosity LHC, where the instantaneous luminosity will be increased up to 5 x 10(34) cm(-2) s(-1). For ATLAS, an upgrade scenario will imply the complete replacement of its internal tracker, as the existing detector will not provide the required performance due to the cumulated radiation damage and the increase in the detector occupancy. The current baseline layout for the new ATLAS tracker is an all-silicon-based detector, with pixel sensors in the inner layers and silicon micro-strip detectors at intermediate and outer radii. The super-module is an integration concept proposed for the strip region of the future ATLAS tracker, where double-sided stereo silicon micro-strip modules are assembled into a low-mass local support structure. An electrical super-module prototype for eight double-sided strip modules has been constructed. The aim is to exercise the multi-module readout chain and to investigate the noise performance of such a system. In this paper, the main components of the current super-module prototype are described and its electrical performance is presented in detail.  
  Address (down) [Gonzalez-Sevilla, S.; Barbier, G.; Cadoux, F.; Clark, A.; Favre, Y.; Ferrere, D.; Iacobucci, G.; La Marra, D.; Weber, M.] DPNC Univ Geneva, Geneva, Switzerland, Email: rgio.Gonzalez.Sevilla@cern.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000332314400038 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1749  
Permanent link to this record
 

 
Author Gomez-Cadenas, J.J.; Benlloch-Rodriguez, J.M.; Ferrario, P.; Monrabal, F.; Rodriguez, J.; Toledo, J.F. url  doi
openurl 
  Title Investigation of the coincidence resolving time performance of a PET scanner based on liquid xenon: a Monte Carlo study Type Journal Article
  Year 2016 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 11 Issue Pages P09011 - 18pp  
  Keywords Gamma camera; SPECT; PET PET/CT; coronary CT angiography (CTA); Instrumentation and methods for time-of-flight (TOF) spectroscopy; Noble liquid detectors (scintillation ionization, double-phase); Scintillators; scintillation and light emission processes (solid, gas and liquid scintillators)  
  Abstract The measurement of the time of flight of the two 511 keV gammas recorded in coincidence in a PET scanner provides an effective way of reducing the random background and therefore increases the scanner sensitivity, provided that the coincidence resolving time (CRT) of the gammas is sufficiently good. The best commercial PET-TOF system today (based in LYSO crystals and digital SiPMs), is the VEREOS of Philips, boasting a CRT of 316 ps (FWHM). In this paper we present a Monte Carlo investigation of the CRT performance of a PET scanner exploiting the scintillating properties of liquid xenon. We find that an excellent CRT of 70 ps (depending on the PDE of the sensor) can be obtained if the scanner is instrumented with silicon photomultipliers (SiPMs) sensitive to the ultraviolet light emitted by xenon. Alternatively, a CRT of 160 ps can be obtained instrumenting the scanner with (much cheaper) blue-sensitive SiPMs coated with a suitable wavelength shifter. These results show the excellent time of flight capabilities of a PET device based in liquid xenon.  
  Address (down) [Gomez-Cadenas, J. J.; Benlloch-Rodriguez, J. M.; Ferrario, P.; Rodriguez, J.] CSIC, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: paola.ferrario@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000387862300011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2866  
Permanent link to this record
 

 
Author n_TOF Collaboration (Giubrone, G. et al); Tain, J.L. doi  openurl
  Title The Role of Fe and Ni for S-process Nucleosynthesis and Innovative Nuclear Technologies Type Journal Article
  Year 2011 Publication Journal of the Korean Physical Society Abbreviated Journal J. Korean Phys. Soc.  
  Volume 59 Issue 2 Pages 2106-2109  
  Keywords Neutron capture cross sections; Neutron time of flight facility; C(6)D(6) detectors; Pulse height weighting technique; Nuclear astrophysics; Advanced nuclear systems  
  Abstract The accurate measurement of neutron capture cross sections of all Fe and Ni isotopes is important for disentangling the contribution of the s-process and the r-process to the stellar nucleosynthesis of elements in the mass range 60 < A < 120. At the same time, Fe and Ni are important components of structural materials and improved neutron cross section data is relevant in the design of new nuclear systems. With the aim of obtaining improved capture data on all stable iron and nickel isotopes, a program of measurements has been launched at the CERN Neutron Time of Flight Facility n_TOF.  
  Address (down) [Giubrone, G; Tain, JL] Univ Valencia, Inst Fis Corpuscular, CSIC, E-46003 Valencia, Spain, Email: tain@ific.uv.es  
  Corporate Author Thesis  
  Publisher Korean Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0374-4884 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000294080700158 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 743  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Search for relativistic magnetic monopoles with five years of the ANTARES detector data Type Journal Article
  Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 054 - 19pp  
  Keywords Exotics; Neutrino Detectors and Telescopes (experiments)  
  Abstract A search for magnetic monopoles using five years of data recorded with the ANTARES neutrino telescope from January 2008 to December 2012 with a total live time of 1121 days is presented. The analysis is carried out in the range beta > 0.6 of magnetic monopole velocities using a strategy based on run-by-run Monte Carlo simulations. No signal above the background expectation from atmospheric muons and atmospheric neutrinos is observed, and upper limits are set on the magnetic monopole flux ranging from 5.7 x 10(-16) to 1.5 x 10(-18) cm(-2).s(-1).sr(-1).  
  Address (down) [Giordano, V.; Leonora, E.] Univ Haute, GRPHE, Inst Univ Technol Colmar, 34 Rue Grillenbreit BP 50568, F-68008 Colmar, France, Email: antares.spokesperson@in2p3.fr  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000411832800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3312  
Permanent link to this record
 

 
Author Gelmini, G.B.; Takhistov, V.; Witte, S.J. url  doi
openurl 
  Title Casting a wide signal net with future direct dark matter detection experiments Type Journal Article
  Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue 7 Pages 009 - 55pp  
  Keywords dark matter detectors; dark matter experiments; dark matter theory  
  Abstract As dark matter (DM) direct detection experiments continue to improve their sensitivity they will inevitably encounter an irreducible background arising from coherent neutrino scattering. This so-called “neutrino floor” may significantly reduce the sensitivity of an experiment to DM-nuclei interactions, particularly if the recoil spectrum of the neutrino background is approximately degenerate with the DM signal. This occurs for the conventionally considered spin-independent (SI) or spin-dependent (SD) interactions. In such case, an increase in the experiment's exposure by multiple orders of magnitude may not yield any significant increase in sensitivity. The typically considered SI and SD interactions, however, do not adequately reflect the whole landscape of the well-motivated DM models, which includes other interactions. Since particle DM has not been detected yet in laboratories, it is essential to understand and maximize the detection capabilities for a broad variety of possible models and signatures. In this work we explore the impact of the background arising from various neutrino sources on the discovery potential of a DM signal for a large class of viable DM-nucleus interactions and several potential futuristic experimental settings, with different target elements. For some momentum suppressed cross sections, large DM particle masses and heavier targets, we find that there is no suppression of the discovery limits due to neutrino backgrounds. Further, we explicitly demonstrate that inelastic scattering, which could appear in models with multicomponent dark sectors, would help to lift the signal degeneracy associated with the neutrino floor. This study could assist with mapping out the optimal DM detection strategy for the next generation of experiments.  
  Address (down) [Gelmini, Graciela B.; Takhistov, Volodymyr; Witte, Samuel J.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA, Email: gelmini@physics.ucla.edu;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000437422800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3646  
Permanent link to this record
 

 
Author Garcia, A.R.; Mendoza, E.; Cano-Ott, D.; Nolte, R.; Martinez, T.; Algora, A.; Tain, J.L.; Banerjee, K.; Bhattacharya, C. doi  openurl
  Title New physics model in GEANT4 for the simulation of neutron interactions with organic scintillation detectors Type Journal Article
  Year 2017 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 868 Issue Pages 73-81  
  Keywords Organic scintillator; Neutron detectors; GEANT4; BC501A; NE213; EJ301  
  Abstract The accurate determination of the response function of organic scintillation neutron detectors complements their experimental characterization. Monte Carlo simulations with GEANT4 can reduce the effort and cost implied, especially for complex detection systems for which the characterization is more challenging. Previous studies have reported on the inaccuracy of GEANT4 in the calculation of the neutron response of organic scintillation detectors above 6 MeV, due to an incomplete description of the neutron-induced alpha production reactions on carbon. We have improved GEANT4 in this direction by incorporating models and data from NRESP, an excellent Monte Carlo simulation tool developed at the Physikalisch-Technische Bundesanstalt (PTB), Germany, for the specific purpose of calculating the neutron response function of organic scintillation detectors. The results have been verified against simulations with NRESP and validated against Time-Of-Flight measurements with an NE213 detector at PTB. This work has potential applications beyond organic scintillation detectors, to other types of detectors where reactions induced by fast neutrons on carbon require an accurate description.  
  Address (down) [Garcia, A. R.; Mendoza, E.; Cano-Ott, D.; Martinez, T.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Ave Complutense 40, Madrid 28040, Spain, Email: daniel.cano@ciemat.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000408406700012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3250  
Permanent link to this record
 

 
Author Garcia, A.R.; Martinez, T.; Cano-Ott, D.; Castilla, J.; Guerrero, C.; Marin, J.; Martinez, G.; Mendoza, E.; Ovejero, M.C.; Reillo, E.M.; Santos, C.; Tera, F.J.; Villamarin, D.; Nolte, R.; Agramunt, J.; Algora, A.; Tain, J.L.; Banerjee, K.; Bhattacharya, C.; Pentilla, H.; Rinta-Antila, S.; Gorelov, D. doi  openurl
  Title MONSTER: a time of flight spectrometer for beta-delayed neutron emission measurements Type Journal Article
  Year 2012 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 7 Issue Pages C05012 - 12pp  
  Keywords Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators); Instrumentation and methods for time-of-flight (TOF) spectroscopy; Neutron detectors (cold, thermal, fast neutrons)  
  Abstract The knowledge of the beta-decay properties of nuclei contributes decisively to our understanding of nuclear phenomena: the beta-delayed neutron emission of neutron rich nuclei plays an important role in the nucleosynthesis r-process and constitutes a probe for nuclear structure of very neutron rich nuclei providing information about the high energy part of the full beta strength (S-beta) function. In addition, beta-delayed neutrons are essential for the control and safety of nuclear reactors. In order to determine the neutron energy spectra and emission probabilities from neutron precursors a MOdular Neutron time-of-flight SpectromeTER (MONSTER) has been proposed for the DESPEC experiment at the future FAIR facility. The design of MONSTER and status of its construction are reported in this work.  
  Address (down) [Garcia, A. R.; Martinez, T.; Cano-Ott, D.; Castilla, J.; Guerrero, C.; Marin, J.; Martinez, G.; Mendoza, E.; Ovejero, M. C.; Reillo, E. M.; Santos, C.; Tera, F. J.; Villamarin, D.] Ctr Invest Energet MedioAmbientales & Tecnol CIEM, E-28040 Madrid, Spain, Email: trino.martinez@ciemat.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000305419700013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1084  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva