|   | 
Details
   web
Records
Author Afonso, V.I.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D.
Title Mapping nonlinear gravity into General Relativity with nonlinear electrodynamics Type Journal Article
Year 2018 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 78 Issue 10 Pages 866 - 11pp
Keywords
Abstract We show that families of nonlinear gravity theories formulated in a metric-affine approach and coupled to a nonlinear theory of electrodynamics can be mapped into general relativity (GR) coupled to another nonlinear theory of electrodynamics. This allows to generate solutions of the former from those of the latter using purely algebraic transformations. This correspondence is explicitly illustrated with the Eddington-inspired Born-Infeld theory of gravity, for which we consider a family of nonlinear electrodynamics and show that, under the map, preserve their algebraic structure. For the particular case of Maxwell electrodynamics coupled to Born-Infeld gravity we find, via this correspondence, a Born-Infeld-type nonlinear electrodynamics on the GR side. Solving the spherically symmetric electrovacuum case for the latter, we show how the map provides directly the right solutions for the former. This procedure opens a new door to explore astrophysical and cosmological scenarios in nonlinear gravity theories by exploiting the full power of the analytical and numerical methods developed within the framework of GR.
Address (up) [Afonso, Victor I.] Univ Fed Campina Grande, Unidade Acad Fis, BR-58429900 Campina Grande, PB, Brazil, Email: viafonso@df.ufcg.edu.br;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000448428400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3776
Permanent link to this record
 

 
Author Agarwalla, S.K.; Masud, M.
Title Can Lorentz invariance violation affect the sensitivity of deep underground neutrino experiment? Type Journal Article
Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 80 Issue 8 Pages 716 - 18pp
Keywords
Abstract We examine the impact of Lorentz Invariance Violation (LIV) in measuring the octant of theta(23) and CP phases in the context of the Deep Underground Neutrino Experiment (DUNE). We consider the CPT-violating LIV parameters involving e-mu(a(e mu)) and e-tau (a(e tau)) flavors, which induce an additional interference term in neutrino and antineutrino appearance probabilities. This newinterference term depends on both the standard CP phase delta and the new dynamical CP phase phi(e mu)/phi(e tau), giving rise to new degeneracies among (theta(23), delta, phi). Taking one LIV parameter at-a-time and considering a small value of vertical bar a(e mu)vertical bar = vertical bar a(e tau)vertical bar = 5 x 10(-24) GeV, we find that the octant discovery potential of DUNE gets substantially deteriorated for unfavorable combinations of delta and phi(e mu)/phi(e tau). The octant of theta(23) can only be resolved at 3 sigma if the true value of sin(2) theta(23) less than or similar to 0.42 or >= 0.62 for any choices of delta and phi. Interestingly, we also observe that when both the LIV parameters a(e mu) and a(e tau) are present together, they cancel out the impact of each other to a significant extent, allowing DUNE to largely regain its octant resolution capability. We also reconstruct the CP phases delta and phi(e mu)/phi(e tau). The typical 1 sigma uncertainty on delta is 10-15 degrees. and the same on phi(e mu)/phi(e tau) is 25-30 degrees depending on the choices of their true values.
Address (up) [Agarwalla, Sanjib Kumar; Masud, Mehedi] Inst Phys, Sachivalaya Marg, Bhubaneswar 751005, India, Email: sanjib@iopb.res.in;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000557368800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4493
Permanent link to this record
 

 
Author KM3NeT Collaboration (Ageron, M. et al); Calvo, D.; Coleiro, A.; Colomer, M.; Gozzini, S.R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Manczak, J.; Real, D.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title Dependence of atmospheric muon flux on seawater depth measured with the first KM3NeT detection units Type Journal Article
Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 80 Issue 2 Pages 99 - 11pp
Keywords
Abstract KM3NeT is a research infrastructure located in the Mediterranean Sea, that will consist of two deep-sea Cherenkov neutrino detectors. With one detector (ARCA), the KM3NeT Collaboration aims at identifying and studying TeV-PeV astrophysical neutrino sources. With the other detector (ORCA), the neutrino mass ordering will be determined by studying GeV-scale atmospheric neutrino oscillations. The first KM3NeT detection units were deployed at the Italian and French sites between 2015 and 2017. In this paper, a description of the detector is presented, together with a summary of the procedures used to calibrate the detector in-situ. Finally, the measurement of the atmospheric muon flux between 2232-3386 m seawater depth is obtained.
Address (up) [Ageron, M.; Bertin, V.; Billault, M.; Brunner, J.; Busto, J.; Caillat, L.; Cosquer, A.; Coyle, P.; Domi, A.; Dornic, D.; Enzenhofer, A.; Henry, S.; Keller, P.; Lamare, P.; Laurence, J.; Lincetto, M.; Maggi, G.; Perrin-Terrin, M.; Quinn, L.; Royon, J.; Salvadori, I.; Tezier, D.; Theraube, S.; Zaborov, D.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France, Email: simone.biagi@infn.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000514581600002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4302
Permanent link to this record
 

 
Author Agrawal, P. et al; Hernandez, P.; Lopez-Pavon, J.
Title Feebly-interacting particles: FIPs 2020 workshop report Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 11 Pages 1015 - 137pp
Keywords
Abstract With the establishment and maturation of the experimental programs searching for new physics with sizeable couplings at the LHC, there is an increasing interest in the broader particle and astrophysics community for exploring the physics of light and feebly-interacting particles as a paradigm complementary to a New Physics sector at the TeV scale and beyond. FIPs 2020 has been the first workshop fully dedicated to the physics of feebly-interacting particles and was held virtually from 31 August to 4 September 2020. The workshop has gathered together experts from collider, beam dump, fixed target experiments, as well as from astrophysics, axions/ALPs searches, current/future neutrino experiments, and dark matter direct detection communities to discuss progress in experimental searches and underlying theory models for FIPs physics, and to enhance the cross-fertilisation across different fields. FIPs 2020 has been complemented by the topical workshop “Physics Beyond Colliders meets theory”, held at CERN from 7 June to 9 June 2020. This document presents the summary of the talks presented at the workshops and the outcome of the subsequent discussions held immediately after. It aims to provide a clear picture of this blooming field and proposes a few recommendations for the next round of experimental results.
Address (up) [Agrawal, P.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England, Email: gaia.lanfranchi@lnf.infn.it
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000720658000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5043
Permanent link to this record
 

 
Author Aguilar, A.C.; De Soto, F.; Ferreira, M.N.; Papavassiliou, J.; Rodriguez-Quintero, J.; Zafeiropoulos, S.
Title Gluon propagator and three-gluon vertex with dynamical quarks Type Journal Article
Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 80 Issue 2 Pages 154 - 17pp
Keywords
Abstract We present a detailed analysis of the kinetic and mass terms associated with the Landau gauge gluon propagator in the presence of dynamical quarks, and a comprehensive dynamical study of certain special kinematic limits of the three-gluon vertex. Our approach capitalizes on results from recent lattice simulations with (2+1) domain wall fermions, a novel nonlinear treatment of the gluon mass equation, and the nonperturbative reconstruction of the longitudinal three-gluon vertex from its fundamental Slavnov-Taylor identities. Particular emphasis is placed on the persistence of the suppression displayed by certain combinations of the vertex form factors at intermediate and low momenta, already known from numerous pure Yang-Mills studies. One of our central findings is that the inclusion of dynamical quarks moderates the intensity of this phenomenon only mildly, leaving the asymptotic low-momentum behavior unaltered, but displaces the characteristic “zero crossing” deeper into the infrared region. In addition, the effect of the three-gluon vertex is explored at the level of the effective gauge coupling, whose size is considerably reduced with respect to its counterpart obtained from the ghost-gluon vertex. The main upshot of the above considerations is the further confirmation of the tightly interwoven dynamics between the two- and three-point sectors of QCD.
Address (up) [Aguilar, A. C.; Ferreira, M. N.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil, Email: aguilar@ifi.unicamp.br
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000517203200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4314
Permanent link to this record