|   | 
Details
   web
Records
Author LHCb Collaboration (Aaij, R. et al); Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.
Title Search for the doubly charmed baryon Omega(+)(cc) Type Journal Article
Year 2021 Publication Science China-Physics Mechanics & Astronomy Abbreviated Journal Sci. China-Phys. Mech. Astron.
Volume 64 Issue 10 Pages 101062 - 12pp
Keywords charmed baryons; limits on production of particles; charmed quarks; experimental tests
Abstract A search for the doubly charmed baryon Omega(+)(cc) with the decay mode Omega(+)(cc) -> Xi K-+(c)-pi(+) is performed using proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the LHCb experiment from 2016 to 2018, corresponding to an integrated luminosity of 5.4 fb(-1). No significant signal is observed within the invariant mass range of 3.6 to 4.0GeV/c(2). Upper limits are set on the ratio R of the production cross-section times the total branching fraction of the Omega(+)(cc) -> Xi K-+(c)-pi(+) decay with respect to the Xi(++)(cc) -> Lambda K-+(c)-pi(+)pi(+) decay. Upper limits at 95% credibility level for R in the range 0.005 to 0.11 are obtained for different hypotheses on the Omega(+)(cc) mass and lifetime in the rapidity range from 2.0 to 4.5 and transverse momentum range from 4 to 15 GeV/c.
Address (up) [Baptista Leite, J.; Bediaga, I; Cruz Torres, M.; De Miranda, J. M.; dos Reis, A. C.; Gomes, A.; Massafferri, A.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil
Corporate Author Thesis
Publisher Science Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-7348 ISBN Medium
Area Expedition Conference
Notes WOS:000694853300003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4971
Permanent link to this record
 

 
Author ANTARES Collaboration (Ageron, M. et al); Aguilar, J.A.; Bigongiari, C.; Carmona, E.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Real, D.; Roca, V.; Salesa, F.; Toscano, S.; Urbano, F.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title ANTARES: The first undersea neutrino telescope Type Journal Article
Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 656 Issue 1 Pages 11-38
Keywords Neutrino; Astroparticle; Neutrino astronomy; Deep sea detector; Marine technology; DWDM; Photomultiplier tube; Submarine cable; Wet mateable connector
Abstract The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given.
Address (up) [Barbarito, E; Cassano, B; Ceres, A; Circella, M; Fiorello, C; Mongelli, M; Montaruli, T; Ruppi, M] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy, Email: Marco.Circella@ba.infn.it
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000296129100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 785
Permanent link to this record
 

 
Author Affolder, A. et al; Garcia, C.; Lacasta, C.; Marco, R.; Marti-Garcia, S.; Miñano, M.; Soldevila, U.
Title Silicon detectors for the sLHC Type Journal Article
Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 658 Issue 1 Pages 11-16
Keywords Silicon particle detectors; Radiation damage; Irradiation; Charge collection efficiency
Abstract In current particle physics experiments, silicon strip detectors are widely used as part of the inner tracking layers. A foreseeable large-scale application for such detectors consists of the luminosity upgrade of the Large Hadron Collider (LHC), the super-LHC or sLHC, where silicon detectors with extreme radiation hardness are required. The mission statement of the CERN RD50 Collaboration is the development of radiation-hard semiconductor devices for very high luminosity colliders. As a consequence, the aim of the R&D programme presented in this article is to develop silicon particle detectors able to operate at sLHC conditions. Research has progressed in different areas, such as defect characterisation, defect engineering and full detector systems. Recent results from these areas will be presented. This includes in particular an improved understanding of the macroscopic changes of the effective doping concentration based on identification of the individual microscopic defects, results from irradiation with a mix of different particle types as expected for the sLHC, and the observation of charge multiplication effects in heavily irradiated detectors at very high bias voltages.
Address (up) [Barber, T.; Breindl, M.; Driewer, A.; Koehler, M.; Kuehn, S.; Parzefall, U.; Preiss, J.; Walz, M.; Wiik, L.] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany, Email: Ulrich.Parzefall@physik.uni-freiburg.de
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000297783300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 836
Permanent link to this record
 

 
Author Bas i Beneito, A.; Herrero-Garcia, J.; Vatsyayan, D.
Title Multi-component dark sectors: symmetries, asymmetries and conversions Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 075 - 31pp
Keywords Models for Dark Matter; Particle Nature of Dark Matter
Abstract We study the relic abundance of several stable particles from a generic dark sector, including the possible presence of dark asymmetries. After discussing the different possibilities for stabilising multi-component dark matter, we analyse the final relic abundance of the symmetric and asymmetric dark matter components, paying special attention to the role of the unavoidable conversions between dark matter states. We find an exponential dependence of the asymmetries of the heavier components on annihilations and conversions. We conclude that having similar symmetric and asymmetric components is a natural outcome in many scenarios of multi-component dark matter. This has novel phenomenological implications, which we briefly discuss.
Address (up) [Bas I Beneito, Arnau] Univ Valencia, Dept Fis Teor, C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: arnau.bas@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000866484800002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5380
Permanent link to this record
 

 
Author Beacham, J. et al; Martinez-Vidal, F.
Title Physics beyond colliders at CERN: beyond the Standard Model working group report Type Journal Article
Year 2020 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 47 Issue 1 Pages 010501 - 114pp
Keywords beyond standard Model; dark matter; dark sector; axions; particle physics; accelerators
Abstract The Physics Beyond Colliders initiative is an exploratory study aimed at exploiting the full scientific potential of the CERN's accelerator complex and scientific infrastructures through projects complementary to the LHC and other possible future colliders. These projects will target fundamental physics questions in modern particle physics. This document presents the status of the proposals presented in the framework of the Beyond Standard Model physics working group, and explore their physics reach and the impact that CERN could have in the next 10-20 years on the international landscape.
Address (up) [Beacham, J.] Duke Univ, Durham, NC 27708 USA, Email: Gaia.Lanfranchi@lnf.infn.it
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000521343200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4341
Permanent link to this record