|   | 
Details
   web
Records
Author Brzezinski, K. et al
Title Detection of range shifts in proton beam therapy using the J-PET scanner: a patient simulation study Type Journal Article
Year 2023 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 68 Issue 14 Pages 145016 - 17pp
Keywords proton therapy; positron emission tomography; in vivo range verification; J-PET; Monte Carlo
Abstract Objective. The Jagiellonian positron emission tomography (J-PET) technology, based on plastic scintillators, has been proposed as a cost effective tool for detecting range deviations during proton therapy. This study investigates the feasibility of using J-PET for range monitoring by means of a detailed Monte Carlo simulation study of 95 patients who underwent proton therapy at the Cyclotron Centre Bronowice (CCB) in Krakow, Poland. Approach. Discrepancies between prescribed and delivered treatments were artificially introduced in the simulations by means of shifts in patient positioning and in the Hounsfield unit to the relative proton stopping power calibration curve. A dual-layer, cylindrical J-PET geometry was simulated in an in-room monitoring scenario and a triple-layer, dual-head geometry in an in-beam protocol. The distribution of range shifts in reconstructed PET activity was visualized in the beam's eye view. Linear prediction models were constructed from all patients in the cohort, using the mean shift in reconstructed PET activity as a predictor of the mean proton range deviation. Main results. Maps of deviations in the range of reconstructed PET distributions showed agreement with those of deviations in dose range in most patients. The linear prediction model showed a good fit, with coefficient of determination r (2) = 0.84 (in-room) and 0.75 (in-beam). Residual standard error was below 1 mm: 0.33 mm (in-room) and 0.23 mm (in-beam). Significance. The precision of the proposed prediction models shows the sensitivity of the proposed J-PET scanners to shifts in proton range for a wide range of clinical treatment plans. Furthermore, it motivates the use of such models as a tool for predicting proton range deviations and opens up new prospects for investigations into the use of intra-treatment PET images for predicting clinical metrics that aid in the assessment of the quality of delivered treatment.
Address (up) [Brzezinski, Karol; Gajewski, Jan; Kopec, Renata; Olko, Pawel; Stasica, Paulina; Rucinski, Antoni] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland, Email: karol.brzezinski@ific.uv.es
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:001026535700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5616
Permanent link to this record
 

 
Author Bueno Rogerio, R.J.; Lima, R.D.; Duarte, L.; Hoff da Silva, J.M.; Dias, M.; Senise, C.R.
Title Mass-dimension-one fermions and their gravitational interaction Type Journal Article
Year 2019 Publication Europhysics Letters Abbreviated Journal EPL
Volume 128 Issue 2 Pages 20004 - 6pp
Keywords
Abstract We investigate in detail the interaction between the spin-(1/2) field endowed with mass dimension one and the graviton. We obtain an interaction vertex that combines the characteristics of scalar-graviton and Dirac's fermion-graviton vertices, due to the scalar-dynamic attribute and the fermionic structure of the mass-dimension-one field. It is shown that this vertex obeys the Ward-Takahashi identity, ensuring the gauge invariance for the interaction. In the contribution of the mass-dimension-one fermion to the graviton propagator at one-loop level, we found the conditions for the cancellation of the tadpole term by a cosmological counterterm. We calculate the scattering process for arbitrary momentum. For low energies, the result reveals that only the scalar sector present in the vertex contributes to the gravitational potential. Finally, we evaluate the non-relativistic limit of the gravitational interaction and obtain an attractive Newtonian potential, as required for a dark-matter candidate.
Address (up) [Bueno Rogerio, R. J.] Univ Fed Itajuba UNIFEI, IFQ, Ave BPS 1303, BR-37500903 Itajuba, MG, Brazil
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075 ISBN Medium
Area Expedition Conference
Notes WOS:000518763000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4317
Permanent link to this record
 

 
Author NEXT Collaboration (Byrnes, N.K. et al); Carcel, S.; Carrion, J.V.; Lopez, F.; Lopez-March, N.; Martin-Albo, J.; Muñoz Vidal, J.; Novella, P.; Querol, M.; Romo-Luque, C.; Sorel, M.; Uson, A.
Title NEXT-CRAB-0: a high pressure gaseous xenon time projection chamber with a direct VUV camera based readout Type Journal Article
Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 18 Issue 8 Pages P08006 - 33pp
Keywords Double-beta decay detectors; Optical detector readout concepts; Particle tracking detectors (Gaseous detectors); Time projection chambers
Abstract The search for neutrinoless double beta decay (0νββ) remains one of the most compelling experimental avenues for the discovery in the neutrino sector. Electroluminescent gas-phase time projection chambers are well suited to 0νββ searches due to their intrinsically precise energy resolution and topological event identification capabilities. Scalability to ton-and multi-ton masses requires readout of large-area electroluminescent regions with fine spatial resolution, low radiogenic backgrounds, and a scalable data acquisition system. This paper presents a detector prototype that records event topology in an electroluminescent xenon gas TPC via VUV image-intensified cameras. This enables an extendable readout of large tracking planes with commercial devices that reside almost entirely outside of the active medium. Following further development in intermediate scale demonstrators, this technique may represent a novel and enlargeable method for topological event imaging in 0νββ.
Address (up) [Byrnes, N. K.; Parmaksiz, I; Asaadi, J.; Baeza-Rubio, J.; Jones, B. J. P.; Mistry, K.; Moya, I. A.; Nygren, D. R.; Stogsdill, K.; Navarro, K. E.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001084390900004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5764
Permanent link to this record
 

 
Author Cabanelas, P. et al; Nacher, E.
Title Performance recovery of long CsI(Tl) scintillator crystals with APD-based readout Type Journal Article
Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 965 Issue Pages 163845 - 6pp
Keywords CsI(Tl) scintillator crystals; Energy resolution; Non-uniformity light output; Optical Coupling; Avalanche Photo-Diodes
Abstract CALIFA is the high efficiency and energy resolution calorimeter for the (RB)-B-3 experiment at FAIR, intended for detecting high energy light charged particles and gamma rays in scattering experiments, and is being commissioned during the Phase-0 experiments at FAIR, between 2018 and 2020. It surrounds the reaction target in a segmented configuration with 2432 detection units made of long CsI(Tl) finger-shaped scintillator crystals. CALIFA has a 10 year intended operational lifetime as the (RB)-B-3 calorimeter, necessitating measures to be taken to ensure enduring performance. In this paper we present a systematic study of two groups of 6 different detection units of the CALIFA detector after more than four years of operation. The energy resolution and light output yield are evaluated under different conditions. Tests cover the aging of the first detector units assembled and investigates recovery procedures for degraded detection units. A possible reason for the observed degradation is given, pointing to the crystal-APD coupling.
Address (up) [Cabanelas, P.; Gonzalez, D.; Alvarez-Pol, H.; Boillos, J. M.; Cortina, D.; Feijoo, M.; Galiana, E.; Pietras, B.; Rodriguez-Sanchez, J. L.] Univ Santiago Compostela, Inst Galego Fis Altas Enerxias, E-15782 Santiago De Compostela, Spain, Email: pablo.cabanelas@usc.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000524338400006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4363
Permanent link to this record
 

 
Author Calatayud-Jordan, J.; Candela-Juan, C.; Palma, J.D.; Pujades-Claumarchirant, M.C.; Soriano, A.; Gracia-Ochoa, M.; Vilar-Palop, J.; Vijande, J.
Title Influence of the simultaneous calibration of multiple ring dosimeters on the individual absorbed dose Type Journal Article
Year 2021 Publication Journal of Radiological Protection Abbreviated Journal J. Radiol. Prot.
Volume 41 Issue 2 Pages 384-397
Keywords ring dosimeters; personal dosimetry; calibration; Monte Carlo; ISO 4037
Abstract Ring dosimeters for personal dosimetry are calibrated in accredited laboratories following ISO 4037-3 guidelines. The simultaneous irradiation of multiple dosimeters would save time, but has to be carefully studied, since the scattering conditions could change and influence the absorbed dose in nearby dosimeters. Monte Carlo simulations using PENELOPE-2014 were performed to explore the need to increase the uncertainty of H-p (0.07) in the simultaneous irradiation of three and five DXT-RAD 707H-2 (Thermo Scientific) ring dosimeters with beam qualities: N-30, N-80 and N-300. Results show that the absorbed dose in each dosimeter is compatible with each of the others and with the reference simulation (a single dosimeter), with a coverage probability of 95% (k = 2). Comparison with experimental data yielded consistent results with the same coverage probability. Therefore, five ring dosimeters can be simultaneously irradiated with beam qualities ranging, at least, between N-30 and N-300 with a negligible impact on the uncertainty of H-p (0.07).
Address (up) [Calatayud-Jordan, J.] Hosp Univ Politecn La Fe, Valencia, Spain, Email: calatayud_josjor@gva.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0952-4746 ISBN Medium
Area Expedition Conference
Notes WOS:000657114600001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4850
Permanent link to this record
 

 
Author Calefice, L.; Hennequin, A.; Henry, L.; Jashal, B.K.; Mendoza, D.; Oyanguren, A.; Sanderswood, I.; Sierra, C.V.; Zhuo, J.H.
Title Effect of the high-level trigger for detecting long-lived particles at LHCb Type Journal Article
Year 2022 Publication Frontiers in Big Data Abbreviated Journal Front. Big Data
Volume 5 Issue Pages 1008737 - 13pp
Keywords LHCb; trigger; real time analysis; long-lived particles; GPU; SciFi; beyond standard physics
Abstract Long-lived particles (LLPs) show up in many extensions of the Standard Model, but they are challenging to search for with current detectors, due to their very displaced vertices. This study evaluated the ability of the trigger algorithms used in the Large Hadron Collider beauty (LHCb) experiment to detect long-lived particles and attempted to adapt them to enhance the sensitivity of this experiment to undiscovered long-lived particles. A model with a Higgs portal to a dark sector is tested, and the sensitivity reach is discussed. In the LHCb tracking system, the farthest tracking station from the collision point is the scintillating fiber tracker, the SciFi detector. One of the challenges in the track reconstruction is to deal with the large amount of and combinatorics of hits in the LHCb detector. A dedicated algorithm has been developed to cope with the large data output. When fully implemented, this algorithm would greatly increase the available statistics for any long-lived particle search in the forward region and would additionally improve the sensitivity of analyses dealing with Standard Model particles of large lifetime, such as KS0 or Lambda (0) hadrons.
Address (up) [Calefice, Lukas] Sorbonne Univ, Lab Phys Nucl & Hautes Energies, CNRS, IN2P3, Paris, France, Email: arantza.oyanguren@ific.uv.es
Corporate Author Thesis
Publisher Frontiers Media Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000889005000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5423
Permanent link to this record
 

 
Author Calibbi, L.; Lopez-Ibañez, M.L.; Melis, A.; Vives, O.
Title Muon and electron g – 2 and lepton masses in flavor models Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 087 - 23pp
Keywords Precision QED; Beyond Standard Model; Effective Field Theories; Quark Masses and SM Parameters
Abstract The stringent experimental bound on μ-> e gamma is compatible with a simultaneous and sizable new physics contribution to the electron and muon anomalous magnetic moments (g – 2)(l) (l = e, mu), only if we assume a non-trivial flavor structure of the dipole operator coefficients. We propose a mechanism in which the realization of the (g – 2)(l) correction is manifestly related to the mass generation through a flavor symmetry. A radiative flavon correction to the fermion mass gives a contribution to the anomalous magnetic moment. In this framework, we introduce a chiral enhancement from a non-trivial O(1) quartic coupling of the scalar potential. We show that the muon and electron anomalies can be simultaneously explained in a vast region of the parameter space with predicted vector-like mediators of masses as large as M chi is an element of [0.6, 2.5] TeV.
Address (up) [Calibbi, Lorenzo] Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China, Email: calibbi@nankai.edu.cn;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000542705000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4443
Permanent link to this record
 

 
Author Calibbi, L.; Lopez-Ibañez, M.L.; Melis, A.; Vives, O.
Title Implications of the Muon g-2 result on the flavour structure of the lepton mass matrix Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 10 Pages 929 - 11pp
Keywords
Abstract The confirmation of the discrepancy with the Standard Model predictions in the anomalous magnetic moment by theMuon g-2 experiment at Fermilab points to a low scale of new physics. Flavour symmetries broken at low energies can account for this discrepancy but these models are much more restricted, as they would also generate offdiagonal entries in the dipole moment matrix. Therefore, if we assume that the observed discrepancy in the muon g – 2 is explained by the contributions of a low-energy flavor symmetry, lepton flavour violating processes can constrain the structure of the lepton mass matrices and therefore the flavour symmetries themselves predicting these structures. We apply these ideas to several discrete flavour symmetries popular in the leptonic sector, such as Delta(27), A(4), and A(5) proportional to CP.
Address (up) [Calibbi, Lorenzo] Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China, Email: calibbi@nankai.edu.cn;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000709829900003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5017
Permanent link to this record
 

 
Author Câmara, H.B.; Joaquim, F.R.; Valle, J.W.F.
Title Dark-sector seeded solution to the strong CP problem Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue 9 Pages 095003 - 6pp
Keywords
Abstract We propose a novel realization of the Nelson-Barr mechanism “seeded” by a dark sector containing scalars and vectorlike quarks. Charge parity (CP) and a Z8 symmetry are spontaneously broken by the complex vacuum expectation value of a singlet scalar, leaving a residual Z2 symmetry that stabilizes dark matter (DM). A complex Cabibbo-Kobayashi-Maskawa matrix arises via one-loop corrections to the quark mass matrix mediated by the dark sector. In contrast with other proposals where nonzero contributions to the strong CP phase arise at the one-loop level, in our case this occurs only at two loops, enhancing naturalness. Our scenario also provides a viable weakly interacting massive particle scalar DM candidate.
Address (up) [Camara, H. B.; Joaquim, F. R.] Univ Tecn Lisboa, Inst Super Tecn, Dept Fis, P-1049001 Lisbon, Portugal, Email: henrique.b.camara@tecnico.ulisboa.pt;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001115232100004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5840
Permanent link to this record
 

 
Author Camarda, S.; Cieri, L.; Ferrera, G.; Urtasun-Elizari, J.
Title Higgs boson production at the LHC: fast and precise predictions in QCD at higher orders Type Journal Article
Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 82 Issue 5 Pages 492 - 8pp
Keywords
Abstract We present a new numerical program, HTurbo, which provides fast and numerically precise predictions for Higgs boson production cross sections. The present version of the code implements the perturbative QCD expansion up to the next-to-next-to-leading order also combined with the resummation of the large logarithmic corrections at small transverse momenta up to next-to-next-to-leading logarithmic accuracy and it includes the Higgs boson production through gluon fusion and decay in two photons with the full dependence on the final-state kinematics. Arbitrary kinematical cuts can be applied to the final states in order to obtain fiducial cross sections and associated kinematical distributions. We present a benchmark comparison with the predictions obtained with the numerical programs HRes and HNNLO programs for which HTurbo represents an improved reimplementation.
Address (up) [Camarda, Stefano] CERN, CH-1211 Geneva, Switzerland, Email: giancarlo.ferrera@mi.infn.it
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000800789000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5234
Permanent link to this record