|   | 
Details
   web
Records
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanchez Mayordomo, C.
Title Amplitude analysis of the B+ -> D+D-K+ decay Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 11 Pages 112003 - 32pp
Keywords
Abstract Results are reported from an amplitude analysis of the B+ -> D+D-K+ decay. The analysis is carried out using LHCb proton-proton collision data taken at root s = 7, 8, and 13 TeV, corresponding to a total integrated luminosity of 9 fb(-1). In order to obtain a good description of the data, it is found to be necessary to include new spin-0 and spin-1 resonances in the D-K+ channel with masses around 2.9 GeV/c(2), and a new spin-0 charmonium resonance in proximity to the spin-2 chi(c2)(3930) state.
Address (up) [Baptista Leite, J.; Bediaga, I; Torres, M. Cruz; De Miranda, J. M.; dos Reis, A. C.; Gomes, A.; Massafferri, A.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil, Email: yanting.fan@cern.ch;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000596369400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4668
Permanent link to this record
 

 
Author Baran, J. et al; Brzezinski, K.
Title Feasibility of the J-PET to monitor the range of therapeutic proton beams Type Journal Article
Year 2024 Publication Physica Medica Abbreviated Journal Phys. Medica
Volume 118 Issue Pages 103301 - 9pp
Keywords PET; Range monitoring; J-PET; Monte Carlo simulations; Proton radiotherapy
Abstract Purpose: The aim of this work is to investigate the feasibility of the Jagiellonian Positron Emission Tomography (J -PET) scanner for intra-treatment proton beam range monitoring. Methods: The Monte Carlo simulation studies with GATE and PET image reconstruction with CASToR were performed in order to compare six J -PET scanner geometries. We simulated proton irradiation of a PMMA phantom with a Single Pencil Beam (SPB) and Spread -Out Bragg Peak (SOBP) of various ranges. The sensitivity and precision of each scanner were calculated, and considering the setup's cost-effectiveness, we indicated potentially optimal geometries for the J -PET scanner prototype dedicated to the proton beam range assessment. Results: The investigations indicate that the double -layer cylindrical and triple -layer double -head configurations are the most promising for clinical application. We found that the scanner sensitivity is of the order of 10-5 coincidences per primary proton, while the precision of the range assessment for both SPB and SOBP irradiation plans was found below 1 mm. Among the scanners with the same number of detector modules, the best results are found for the triple -layer dual -head geometry. The results indicate that the double -layer cylindrical and triple -layer double -head configurations are the most promising for the clinical application, Conclusions: We performed simulation studies demonstrating that the feasibility of the J -PET detector for PET -based proton beam therapy range monitoring is possible with reasonable sensitivity and precision enabling its pre -clinical tests in the clinical proton therapy environment. Considering the sensitivity, precision and cost-effectiveness, the double -layer cylindrical and triple -layer dual -head J -PET geometry configurations seem promising for future clinical application.
Address (up) [Baran, Jakub; Silarski, Michal; Chug, Neha; Coussat, Aurelien; Czerwinski, Eryk; Dadgar, Meysam; Dulski, Kamil; Eliyan, Kavya, V; Gajos, Aleksander; Kacprzak, Krzysztof; Kaplon, Lukasz; Korcyl, Grzegorz; Kozik, Tomasz; Kumar, Deepak; Niedzwiecki, Szymon; Panek, Dominik; Parzych, Szymon; del Rio, Elena Perez; Simbarashe, Moyo; Sharma, Sushil; Shivani; Skurzok, Magdalena; Stepien, Ewa L.; Tayefi, Keyvan; Tayefi, Faranak; Moskal, Pawel] Jagiellonian Univ, Fac Phys Astron & Appl Comp Sci, 11 Lojasiewicza St, PL-30348 Krakow, Poland, Email: jakubbaran92@gmail.com
Corporate Author Thesis
Publisher Elsevier Sci Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1120-1797 ISBN Medium
Area Expedition Conference
Notes WOS:001178648400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5990
Permanent link to this record
 

 
Author n_TOF Collaboration (Barbagallo, M. et al); Domingo-Pardo, C.; Tain, J.L.; Tarifeño-Saldivia, A.
Title Be-7(n,alpha)He-4 Reaction and the Cosmological Lithium Problem: Measurement of the Cross Section in a Wide Energy Range at n_TOF at CERN Type Journal Article
Year 2016 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 117 Issue 15 Pages 152701 - 7pp
Keywords
Abstract The energy-dependent cross section of the (7)Bed(n,alpha)He-4 reaction, of interest for the so-called cosmological lithium problem in big bang nucleosynthesis, has been measured for the first time from 10 meV to 10 keV neutron energy. The challenges posed by the short half-life of Be-7 and by the low reaction cross section have been overcome at nTOF thanks to an unprecedented combination of the extremely high luminosity and good resolution of the neutron beam in the new experimental area (EAR2) of the nTOF facility at CERN, the availability of a sufficient amount of chemically pure Be-7, and a specifically designed experimental setup. Coincidences between the two alpha particles have been recorded in two Si-Be-7-Si arrays placed directly in the neutron beam. The present results are consistent, at thermal neutron energy, with the only previous measurement performed in the 1960s at a nuclear reactor. The energy dependence reported here clearly indicates the inadequacy of the cross section estimates currently used in BBN calculations. Although new measurements at higher neutron energy may still be needed, the n_TOF results hint at a minor role of this reaction in BBN, leaving the long-standing cosmological lithium problem unsolved.
Address (up) [Barbagallo, M.; Colonna, N.; Damone, L.; Mastromarco, M.; Mazzone, A.; Tagliente, G.; Variale, V.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy, Email: nicola.colonna@ba.infn.it
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000384479300003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2822
Permanent link to this record
 

 
Author n_TOF Collaboration (Barbagallo, M. et al); Domingo-Pardo, C.; Tain, J.L.
Title Experimental setup and procedure for the measurement of the Be-7(n,p)Li-7 reaction at n_TOF Type Journal Article
Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 887 Issue Pages 27-33
Keywords Cosmological Lithium problem; Big bang nucleosynthesis; Be-7(n,p)Li-7 reaction; n_TOF spallation neutron source
Abstract Following the completion of the second neutron beam line and the related experimental area (EAR2) at the n_TOF spallation neutron source at CERN, several experiments were planned and performed. The high instantaneous neutron flux available in EAR2 allows to investigate neutron induced reactions with charged particles in the exit channel even employing targets made out of small amounts of short-lived radioactive isotopes. After the successful measurement of the Be-7(n,alpha)alpha cross section, the Be-7(n,p)Li-7 reaction was studied in order to provide still missing cross section data of relevance for Big Bang Nucleosynthesis (BBN), in an attempt to find a solution to the cosmological Lithium abundance problem. This paper describes the experimental setup employed in such a measurement and its characterization.
Address (up) [Barbagallo, M.; Mastromarco, M.; Damone, L. A.; Mazzone, A.; Colonna, N.; Tagliente, G.; Variale, V.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy, Email: finocchiaro@lns.infn.ir
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000427814400005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3528
Permanent link to this record
 

 
Author ANTARES Collaboration (Ageron, M. et al); Aguilar, J.A.; Bigongiari, C.; Carmona, E.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Real, D.; Roca, V.; Salesa, F.; Toscano, S.; Urbano, F.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title ANTARES: The first undersea neutrino telescope Type Journal Article
Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 656 Issue 1 Pages 11-38
Keywords Neutrino; Astroparticle; Neutrino astronomy; Deep sea detector; Marine technology; DWDM; Photomultiplier tube; Submarine cable; Wet mateable connector
Abstract The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given.
Address (up) [Barbarito, E; Cassano, B; Ceres, A; Circella, M; Fiorello, C; Mongelli, M; Montaruli, T; Ruppi, M] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy, Email: Marco.Circella@ba.infn.it
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000296129100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 785
Permanent link to this record
 

 
Author Affolder, A. et al; Garcia, C.; Lacasta, C.; Marco, R.; Marti-Garcia, S.; Miñano, M.; Soldevila, U.
Title Silicon detectors for the sLHC Type Journal Article
Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 658 Issue 1 Pages 11-16
Keywords Silicon particle detectors; Radiation damage; Irradiation; Charge collection efficiency
Abstract In current particle physics experiments, silicon strip detectors are widely used as part of the inner tracking layers. A foreseeable large-scale application for such detectors consists of the luminosity upgrade of the Large Hadron Collider (LHC), the super-LHC or sLHC, where silicon detectors with extreme radiation hardness are required. The mission statement of the CERN RD50 Collaboration is the development of radiation-hard semiconductor devices for very high luminosity colliders. As a consequence, the aim of the R&D programme presented in this article is to develop silicon particle detectors able to operate at sLHC conditions. Research has progressed in different areas, such as defect characterisation, defect engineering and full detector systems. Recent results from these areas will be presented. This includes in particular an improved understanding of the macroscopic changes of the effective doping concentration based on identification of the individual microscopic defects, results from irradiation with a mix of different particle types as expected for the sLHC, and the observation of charge multiplication effects in heavily irradiated detectors at very high bias voltages.
Address (up) [Barber, T.; Breindl, M.; Driewer, A.; Koehler, M.; Kuehn, S.; Parzefall, U.; Preiss, J.; Walz, M.; Wiik, L.] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany, Email: Ulrich.Parzefall@physik.uni-freiburg.de
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000297783300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 836
Permanent link to this record
 

 
Author Barbero, J.F.; Ferreiro, A.; Navarro-Salas, J.; Villaseñor, E.J.S.
Title Adiabatic expansions for Dirac fields, renormalization, and anomalies Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 98 Issue 2 Pages 025016 - 11pp
Keywords
Abstract We introduce an iterative method to univocally determine the adiabatic expansion of the modes of Dirac fields in spatially homogeneous external backgrounds. We overcome the ambiguities found in previous studies and use this new procedure to improve the adiabatic regularization/renormalization scheme. We provide details on the application of the method for Dirac fields living in a four-dimensional Friedmann-Lemaitre-Robertson-Walker spacetime with a Yukawa coupling to an external scalar field. We check the consistency of our proposal by working out the conformal anomaly. We also analyze a two-dimensional Dirac field in Minkowski space coupled to a homogeneous electric field and reproduce the known results on the axial anomaly. The adiabatic expansion of the modes given here can be used to properly characterize the allowed physical states of the Dirac fields in the above external backgrounds.
Address (up) [Barbero G, J. Fernando] CSIC, Inst Estruct Mat, E-28006 Madrid, Spain, Email: fbarbero@iem.cfmac.csic.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000439414000006 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3673
Permanent link to this record
 

 
Author Barducci, D.; Bertuzzo, E.; Caputo, A.; Hernandez, P.
Title Minimal flavor violation in the see-saw portal Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 185 - 28pp
Keywords Neutrino Physics; Beyond Standard Model; CP violation
Abstract We consider an extension of the Standard Model with two singlet leptons, with masses in the electroweak range, that induce neutrino masses via the see-saw mechanism, plus a generic new physics sector at a higher scale, A. We apply the minimal flavor violation (MFV) principle to the corresponding Effective Field Theory (nu SMEFT) valid at energy scales E << A. We identify the irreducible sources of lepton flavor and lepton number violation at the renormalizable level, and apply the MFV ansatz to derive the scaling of the Wilson coefficients of the nu SMEFT operators up to dimension six. We highlight the most important phenomenological consequences of this hypothesis in the rates for exotic Higgs decays, the decay length of the heavy neutrinos, and their production modes at present and future colliders. We also comment on possible astrophysical implications.
Address (up) [Barducci, Daniele] Univ Roma La Sapienza, Dipartimento Fis, Piazzale Aldo Moro 5, I-00185 Rome, Italy, Email: daniele.barducci@roma1.infn.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000546965800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4462
Permanent link to this record
 

 
Author Barducci, D.; Bertuzzo, E.; Caputo, A.; Hernandez, P.; Mele, B.
Title The see-saw portal at future Higgs Factories Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 117 - 32pp
Keywords Beyond Standard Model; Higgs Physics; Neutrino Physics
Abstract We consider an extension of the Standard Model with two right-handed singlet fermions with mass at the electroweak scale that induce neutrino masses, plus a generic new physics sector at a higher scale Lambda. We focus on the effective operators of lowest dimension d = 5, which induce new production and decay modes for the singlet fermions. We assess the sensitivity of future Higgs Factories, such as FCC-ee, CLIC-380, ILC and CEPC, to the coefficients of these operators for various center of mass energies. We show that future lepton colliders can test the cut-off of the theory up to Lambda similar or equal to 500-1000 TeV, surpassing the reach of future indirect measurements of the Higgs and Z boson widths. We also comment on the possibility of determining the underlying model flavor structure should a New Physics signal be observed, and on the impact of higher dimensional d = 6 operators on the experimental signatures.
Address (up) [Barducci, Daniele] Univ Roma Sapienza, Piazzale Aldo Moro 5, I-00185 Rome, Italy, Email: daniele.barducci@roma1.infn.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000629645800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4766
Permanent link to this record
 

 
Author Barenboim, G.; Bosch, C.; Lee, J.S.; Lopez-Ibañez, M.L.; Vives, O.
Title Flavor-changing Higgs boson decays into bottom and strange quarks in supersymmetric models Type Journal Article
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 92 Issue 9 Pages 095017 - 15pp
Keywords
Abstract In this work, we explore the flavor-changing decays H-i -> bs in a general supersymmetric scenario. In these models the flavor-changing decays arise at loop level, but-because they originate from a dimension-four operator-they do not decouple and may provide a first sign of new physics for heavy masses beyond the reach of colliders. In the framework of the minimal supersymmetric extension of the Standard Model, we find that the largest branching ratio of the lightest Higgs (H-1) is O(10(-6)) after imposing present experimental constraints, while heavy Higgs states may still present branching ratios O(10(-3)). In a more general supersymmetric scenario, where additional Higgs states may modify the Higgs mixings, the branching ratio BR(H-1 -> bs) can reach values O(10(-4)), while heavy Higgses still remain at O(10(-3)). Although these values are clearly out of reach for the LHC, a full study in a linear collider environment could be worth pursuing.
Address (up) [Barenboim, G.; Bosch, C.; Lopez-Ibanez, M. L.; Vives, O.] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000364411600009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2449
Permanent link to this record