|   | 
Details
   web
Records
Author Agarwalla, S.K.; Lombardi, F.; Takeuchi, T.
Title Constraining non-standard interactions of the neutrino with Borexino Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 079 - 21pp
Keywords Neutrino Physics; Solar and Atmospheric Neutrinos; Beyond Standard Model
Abstract We use the Borexino 153.6 ton.year data to place constraints on non-standard neutrino-electron interactions, taking into account the uncertainties in the Be-7 solar neutrino flux and the mixing angle theta(23), and backgrounds due to Kr-85 and Bi-210 beta-decay. We find that the bounds are comparable to existing bounds from all other experiments. Further improvement can be expected in Phase II of Borexino due to the reduction in the Kr-85 background.
Address (up) [Agarwalla, Sanjib Kumar] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: Sanjib.Agarwalla@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000313124000014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1317
Permanent link to this record
 

 
Author Aguilar, A.C.; Binosi, D.; Papavassiliou, J.
Title QCD effective charges from lattice data Type Journal Article
Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 002 - 24pp
Keywords Nonperturbative Effects; QCD
Abstract We use recent lattice data on the gluon and ghost propagators, as well as the Kugo-Ojima function, in order to extract the non-perturbative behavior of two particular definitions of the QCD effective charge, one based on the pinch technique construction, and one obtained from the standard ghost-gluon vertex. The construction relies crucially on the definition of two dimensionful quantities, which are invariant under the renormalization group, and are built out of very particular combinations of the aforementioned Green's functions. The main non-perturbative feature of both effective charges, encoded in the infrared finiteness of the gluon propagator and ghost dressing function used in their definition, is the freezing at a common finite (non-vanishing) value, in agreement with a plethora of theoretical and phenomenological expectations. We discuss the sizable discrepancy between the freezing values obtained from the present lattice analysis and the corresponding estimates derived from several phenomenological studies, and attribute its origin to the difference in the gauges employed. A particular toy calculation suggests that the modifications induced to the non-perturbative gluon propagator by the gauge choice may indeed account for the observed deviation of the freezing values.
Address (up) [Aguilar, A. C.] Fed Univ ABC, CCNH, BR-09210170 Santo Andre, Brazil, Email: arlene.aguilar@ufabc.edu.br
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000281504500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 384
Permanent link to this record
 

 
Author Aguilar, A.C.; Binosi, D.; Papavassiliou, J.
Title Gluon mass through ghost synergy Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 050 - 32pp
Keywords Nonperturbative Effects; QCD
Abstract In this work we compute, at the “one-loop-dressed” level, the nonperturbative contribution of the ghost loops to the self-energy of the gluon propagator, in the Landau gauge. This is accomplished within the PT-BFM formalism, where the contribution of the ghost-loops is inherently transverse, by virtue of the QED-like Ward identities satisfied in this framework. At the level of the “one-loop dressed” approximation, the ghost transversality is preserved by employing a suitable gauge-technique Ansatz for the longitudinal part of the full ghost-gluon vertex. Under the key assumption that the undetermined transverse part of this vertex is numerically subleading in the infrared, and using as nonperturbative input the available lattice data for the ghost dressing function, we show that the ghost contributions have a rather sizable effect on the overall shape of the gluon propagator, both for d = 3, 4. Then, by exploiting a recently introduced dynamical equation for the effective gluon mass, whose solutions depend crucially on the characteristics of the gluon propagator at intermediate energies, we show that if the ghost loops are removed from the gluon propagator then the gluon mass vanishes. These findings suggest that, at least at the level of the Schwinger-Dyson equations, the effects of gluons and ghosts are inextricably connected, and must be combined suitably in order to reproduce the results obtained in the recent lattice simulations.
Address (up) [Aguilar, A. C.] Fed Univ ABC, CCNH, BR-09210170 Santo Andre, Brazil, Email: arlene.aguilar@ufabc.edu.br
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000300181800050 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 969
Permanent link to this record
 

 
Author Aguilar-Saavedra, J.A.; Casas, J.A.; Quilis, J.; Ruiz de Austri, R.
Title Multilepton dark matter signals Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 069 - 24pp
Keywords Beyond Standard Model; Gauge Symmetry
Abstract The signatures of dark matter at the LHC commonly involve, in simplified scenarios, the production of a single particle plus large missing energy, from the undetected dark matter. However, in Z ' -portal scenarios anomaly cancellation requires the presence of extra dark leptons in the dark sector. We investigate the signatures of the minimal scenarios of this kind, which involve cascade decays of the extra Z ' boson into the dark leptons, identifying a four-lepton signal as the most promising one. We estimate the sensitivity to this signal at the LHC, the high-luminosity LHC upgrade, a possible high-energy upgrade, as well as a future circular collider. For Z ' couplings compatible with current dijet constraints the multilepton signals can reach the 5 sigma level already at Run 2 of the LHC. At future colliders, couplings two orders of magnitude smaller than the electroweak coupling can be probed with 5 sigma sensitivity.
Address (up) [Aguilar-Saavedra, J. A.; Casas, J. A.; Quilis, J.] Univ Autonoma Madrid, IFT, CSIC, E-28049 Madrid, Spain, Email: jaas@ugr.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000528689700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4384
Permanent link to this record
 

 
Author Aguilera-Verdugo, J.J.; Driencourt-Mangin, F.; Plenter, J.; Ramirez-Uribe, S.; Rodrigo, G.; Sborlini, G.F.R.; Torres Bobadilla, W.J.; Tracz, S.
Title Causality, unitarity thresholds, anomalous thresholds and infrared singularities from the loop-tree duality at higher orders Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 163 - 12pp
Keywords Duality in Gauge Field Theories; Perturbative QCD; Scattering Amplitudes
Abstract We present the first comprehensive analysis of the unitarity thresholds and anomalous thresholds of scattering amplitudes at two loops and beyond based on the loop- tree duality, and show how non-causal unphysical thresholds are locally cancelled in an efficient way when the forest of all the dual on-shell cuts is considered as one. We also prove that soft and collinear singularities at two loops and beyond are restricted to a compact region of the loop three-momenta, which is a necessary condition for implementing a local cancellation of loop infrared singularities with the ones appearing in real emission; without relying on a subtraction formalism.
Address (up) [Aguilera-Verdugo, J. Jesus; Driencourt-Mangin, Felix; Plenter, Judith; Ramirez-Uribe, Selomit; Rodrigo, German; Sborlini, German F. R.; Torres Bobadilla, William J.; Tracz, Szymon] Univ Valencia, Consejo Super Invest Cient, Inst Fis Corpuscular, Parc Cient, E-46980 Valencia, Spain, Email: jesus.aguilera@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000513535500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4288
Permanent link to this record