|   | 
Details
   web
Records
Author ATLAS Collaboration (Abat, E. et al); Bernabeu Verdu, J.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Ferrer, A.; Garcia, C.; Gonzalez-Sevilla, S.; Higon-Rodriguez, E.; Lacasta, C.; Marti-Garcia, S.; Mitsou, V.A.; Ruiz, A.; Solans, C.; Valero, A.; Valls Ferrer, J.A.
Title Photon reconstruction in the ATLAS Inner Detector and Liquid Argon Barrel Calorimeter at the 2004 Combined Test Beam Type Journal Article
Year 2011 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 6 Issue Pages P04001 - 40pp
Keywords Transition radiation detectors; Calorimeters; Large detector systems for particle and astroparticle physics; Particle tracking detectors (Solid-state detectors)
Abstract The reconstruction of photons in the ATLAS detector is studied with data taken during the 2004 Combined Test Beam, where a full slice of the ATLAS detector was exposed to beams of particles of known energy at the CERN SPS. The results presented show significant differences in the longitudinal development of the electromagnetic shower between converted and unconverted photons as well as in the total measured energy. The potential to use the reconstructed converted photons as a means to precisely map the material of the tracker in front of the electromagnetic calorimeter is also considered. All results obtained are compared with a detailed Monte-Carlo simulation of the test-beam setup which is based on the same simulation and reconstruction tools as those used for the ATLAS detector itself.
Address (up) [Wheeler, S.] Univ Alberta, Dept Phys, Ctr Particle Phys, Edmonton, AB T6G 2G7, Canada, Email: stathes.paganis@cern.ch
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000294491300002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 848
Permanent link to this record
 

 
Author NEXT Collaboration (Woodruff, K. et al); Alvarez, V.; Benlloch-Rodriguez, J.M.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Herrero, P.; Kekic, M.; Lopez-March, N.; Martinez-Lema, G.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Perez, J.; Querol, M.; Renner, J.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N.
Title Radio frequency and DC high voltage breakdown of high pressure helium, argon, and xenon Type Journal Article
Year 2020 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 15 Issue 4 Pages P04022 - 15pp
Keywords Gaseous detectors; Gaseous imaging and tracking detectors
Abstract Motivated by the possibility of guiding daughter ions from double beta decay events to single-ion sensors for barium tagging, the NEXT collaboration is developing a program of R&D to test radio frequency (RF) carpets for ion transport in high pressure xenon gas. This would require carpet functionality in regimes at higher pressures than have been previously reported, implying correspondingly larger electrode voltages than in existing systems. This mode of operation appears plausible for contemporary RF-carpet geometries due to the higher predicted breakdown strength of high pressure xenon relative to low pressure helium, the working medium in most existing RF carpet devices. In this paper we present the first measurements of the high voltage dielectric strength of xenon gas at high pressure and at the relevant RF frequencies for ion transport (in the 10MHz range), as well as new DC and RF measurements of the dielectric strengths of high pressure argon and helium gases at small gap sizes. We find breakdown voltages that are compatible with stable RF carpet operation given the gas, pressure, voltage, materials and geometry of interest.
Address (up) [Woodruff, K.; Baeza-Rubio, J.; Huerta, D.; Jones, B. J. P.; McDonald, A. D.; Norman, L.; Nygren, D. R.; Byrnes, N. K.; Denisenko, A. A.; Foss, F. W., Jr.; Laing, A.; Martinez, A.; Rogers, L.; Thapa, P.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA, Email: katherine.woodruff@uta.edu
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000534740000022 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4401
Permanent link to this record