|   | 
Details
   web
Records
Author DUNE Collaboration (Abud, A.A. et al); Amedo, P.; Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sorel, M.; Tortola, M.; Valle, J.W.F.
Title Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 107 Issue 9 Pages 092012 - 22pp
Keywords
Abstract Measurements of electrons from ?e interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectra is derived, and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50 MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons.
Address (up) [Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: zdjurcic@anl.gov;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001010953400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5588
Permanent link to this record
 

 
Author DUNE Collaboration (Abud, A.A. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network Type Journal Article
Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 82 Issue 10 Pages 903 - 19pp
Keywords
Abstract Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation.
Address (up) [Isenhower, L.] Abilenexs Christian Univ, Abilene, TX 79601 USA, Email: tjyang@fnal.gov
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000866503200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5386
Permanent link to this record
 

 
Author Norena, J.; Verde, L.; Barenboim, G.; Bosch, C.
Title Prospects for constraining the shape of non-Gaussianity with the scale-dependent bias Type Journal Article
Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 08 Issue 8 Pages 019 - 16pp
Keywords redshift surveys; cosmological parameters from LSS; inflation
Abstract We consider whether the non-Gaussian scale-dependent halo bias can be used not only to constrain the local form of non-Gaussianity but also to distinguish among different shapes. In particular, we ask whether it can constrain the behavior of the primordial three-point function in the squeezed limit where one of the momenta is much smaller than the other two. This is potentially interesting since the observation of a three-point function with a squeezed limit that does not go like the local nor equilateral templates would be a signal of non-trivial dynamics during inflation. To this end we use the quasi-single field inflation model of Chen & Wang [1, 2] as a representative two-parameter model, where one parameter governs the amplitude of non-Gaussianity and the other the shape. We also perform a model-independent analysis by parametrizing the scale-dependent bias as a power-law on large scales, where the power is to be constrained from observations. We find that proposed large-scale structure surveys (with characteristics similar to the dark energy task force stage IV surveys) have the potential to distinguish among the squeezed limit behavior of different bispectrum shapes for a wide range of fiducial model parameters. Thus the halo bias can help discriminate between different models of inflation.
Address (up) [Norena, Jorge; Verde, Licia] Univ Barcelona ICC UB IEEC, Inst Ciencias Cosmos, Barcelona 08028, Spain, Email: jorge.norena@icc.ub.edu;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000308800700020 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1189
Permanent link to this record
 

 
Author Oldengott, I.M.; Barenboim, G.; Kahlen, S.; Salvado, J.; Schwarz, D.J.
Title How to relax the cosmological neutrino mass bound Type Journal Article
Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 049 - 18pp
Keywords neutrino masses from cosmology; cosmological neutrinos; cosmological parameters from CMBR; cosmological parameters from LSS
Abstract We study the impact of non-standard momentum distributions of cosmic neutrinos on the anisotropy spectrum of the cosmic microwave background and the matter power spectrum of the large scale structure. We show that the neutrino distribution has almost no unique observable imprint, as it is almost entirely degenerate with the effective number of neutrino flavours, N-eff, and the neutrino mass, m(nu). Performing a Markov chain Monte Carlo analysis with current cosmological data, we demonstrate that the neutrino mass bound heavily depends on the assumed momentum distribution of relic neutrinos. The message of this work is simple and has to our knowledge not been pointed out clearly before: cosmology allows that neutrinos have larger masses if their average momentum is larger than that of a perfectly thermal distribution. Here we provide an example in which the mass limits are relaxed by a factor of two.
Address (up) [Oldengott, Isabel M.; Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: isabel.oldengott@uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000466578400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4001
Permanent link to this record
 

 
Author Barenboim, G.; Park, W.I.
Title Gravitational waves from first order phase transitions as a probe of an early matter domination era and its inverse problem Type Journal Article
Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 759 Issue Pages 430-438
Keywords
Abstract We investigate the gravitational wave background from a first order phase transition in a matter-dominated universe, and show that it has a unique feature from which important information about the properties of the phase transition and thermal history of the universe can be easily extracted. Also, we discuss the inverse problem of such a gravitational wave background in view of the degeneracy among macroscopic parameters governing the signal.
Address (up) [Park, Wan-Il] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000380409200057 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2883
Permanent link to this record