|   | 
Details
   web
Records
Author Alioli, S.; Fuster, J.; Garzelli, M.V.; Gavardi, A.; Irles, A.; Melini, D.; Moch, S.O.; Uwer, P.; Voss, K.
Title Phenomenology of t(t)over-barj plus X production at the LHC Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 146 - 63pp
Keywords Specific QCD Phenomenology; Top Quark
Abstract We present phenomenological results for t (t) over barj + X production at the Large Hadron Collider, of interest for designing forthcoming experimental analyses of this process. We focus on those cases where the t (t) over barj + X process is considered as a signal. We discuss present theoretical uncertainties and the dependence on relevant input parameters entering the computation. For the R. distribution, which depends on the invariant mass of the t (t) over barj-system, we present reference predictions in the on-shell, (MS) over bar and MSR top-quark mass renormalization schemes, applying the latter scheme to this process for the first time. Our conclusions are particularly interesting for those analyses aiming at extracting the topquark mass from cross-section measurements.
Address (up) [Alioli, Simone; Gavardi, Alessandro] Univ Milano Bicocca, Dipartimento Fis G Occhialini, Piazza Sci 3, I-20126 Bicocca, Italy, Email: simone.alioli@unimib.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000801110800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5236
Permanent link to this record
 

 
Author Alonso, I. et al; Bernabeu, J.
Title Cold atoms in space: community workshop summary and proposed road-map Type Journal Article
Year 2022 Publication EPJ Quantum Technology Abbreviated Journal EPJ Quantum Technol.
Volume 9 Issue 1 Pages 30 - 55pp
Keywords
Abstract We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies.
Address (up) [Alonso, Ivan] Univ Balearic Isl, Higher Polytech Sch, Valldemossa Rd, Palma De Mallorca 07122, Spain, Email: Oliver.Buchmueller@cern.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2662-4400 ISBN Medium
Area Expedition Conference
Notes WOS:000885839700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5424
Permanent link to this record
 

 
Author Belle-II DEPFET and PXD Collaborations (Wang, B. et al); Marinas, C.
Title Operational experience of the Belle II pixel detector Type Journal Article
Year 2022 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1032 Issue Pages 166631 - 7pp
Keywords Belle II PXD; DEPFET; Pixel detector; Vertex detector
Abstract The Belle II experiment at the SuperKEKB accelerator has started its physics data taking with the full detector setup in March 2019. It aims to collect 40 times more e+e- collision data compared with its predecessor Belle experiment. The Belle II pixel detector (PXD) is based on the Depleted P-channel Field Effect Transistor (DEPFET) technology. The PXD plays an important role in the tracking and vertexing of the Belle II detector. Its two layers are arranged at radii of 14 mm and 22 mm around the interaction point. The sensors are thinned down to 75 μm to minimize multiple scattering, and each module has interconnects and ASICs integrated on the sensor with silicon frames for mechanical support. PXD showed good performance during data taking. It also faces several operational challenges due to the high background level from the SuperKEKB accelerator, such as the damage from beam loss events, the drift in the HV working point due to radiation effect, and the impact of the high background.
Address (up) [Alonso, O.; Dieguez, A.] Univ Barcelona, C Marti Franques 1, Barcelona 08028, Spain, Email: wang@mpp.mpg.de
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000793768200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5227
Permanent link to this record
 

 
Author Altakach, M.M.; Lamba, P.; Maselek, R.; Mitsou, V.A.; Sakurai, K.
Title Discovery prospects for long-lived multiply charged particles at the LHC Type Journal Article
Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 82 Issue 9 Pages 848 - 23pp
Keywords
Abstract In this work, we aim to provide a comprehensive and largely model independent investigation on prospects to detect long-lived multiply charged particles at the LHC. We consider particles with spin 0 and 1/2, with electric charges in range 1 <= vertical bar Q/e vertical bar <= 8, which are singlet or triplet under SU(3)(c). Such particles might be produced as particle-antiparticle pairs and propagate through detectors, or form a positronium (quarkonium)-like bound state. We consider both possibilities and estimate lower mass bounds on new particles, that can be provided by ATLAS, CMS and Mol ',DAL experiments at the end of Run 3 and HL-LHC data taking periods. We find out that the sensitivities of ATLAS and CMS are generally stronger than those of MoEDAL at Run 3, while they may be competitive at HL-LHC for 3 less than or similar to vertical bar Q/e vertical bar less than or similar to 7 for all types of long-lived particles we consider.
Address (up) [Altakach, Mohammad Mahdi; Lamba, Priyanka; Maselek, Rafal; Sakurai, Kazuki] Univ Warsaw, Fac Phys, Inst Theoret Phys, Ul Pasteura 5, PL-02093 Warsaw, Poland, Email: r.maselek@uw.edu.pl
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000861486700006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5362
Permanent link to this record
 

 
Author Alvarado, F.; Alvarez-Ruso, L.
Title Light-quark mass dependence of the nucleon axial charge and pion-nucleon scattering phenomenology Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue 7 Pages 074001 - 13pp
Keywords
Abstract The light-quark mass dependence of the nucleon axial isovector charge (gA) has been studied up to nextto-next-to-leading order, O(p4), in relativistic chiral perturbation theory using extended-on-mass-shell renormalization, without and with explicit Delta(1232) degrees of freedom. We show that in the Delta-less case, at this order, the flat trend of gA(MN) exhibited by state-of-the-art lattice QCD (LQCD) results cannot be reproduced using low energy constants extracted from pion-nucleon elastic and inelastic scattering. A satisfactory description of these LQCD data is only achieved in the theory with Delta. From this fit, we report gA(MN(phys)) = 1.260 1 0.012, close to the experimental result, and d16 = -0.88 1 0.88 GeV-2, in agreement with its empirical value. The large uncertainties are of theoretical origin, reflecting the difference between O(p3) and O(p4) that still persists at large MN in presence of the Delta.
Address (up) [Alvarado, Fernando; Alvarez-Ruso, Luis] Inst Fis Corpuscular IFIC, E-46980 Valencia, Spain, Email: Fernando.Alvarado@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000791214200001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5217
Permanent link to this record