toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Bariego-Quintana, A.; Calvo, D.; Carretero, V.; Cecchini, V.; Garcia Soto, A.; Gozzini, S.R.; Hernandez-Rey, J.J.; Lazo, A.; Lessing, N.; Manczak, J.; Palacios Gonzalez, J.; Pastor Gomez, E.J.; Prado, J.; Rahaman, U.; Real, D.; Saina, A.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title The Power Board of the KM3NeT Digital Optical Module: Design, Upgrade, and Production Type Journal Article
  Year 2024 Publication Electronics Abbreviated Journal Electronics  
  Volume 13 Issue 11 Pages 2044 - 17pp  
  Keywords power supply; acquisition electronics; neutrino telescopes  
  Abstract The KM3NeT Collaboration is building an underwater neutrino observatory at the bottom of the Mediterranean Sea, consisting of two neutrino telescopes, both composed of a three-dimensional array of light detectors, known as digital optical modules. Each digital optical module contains a set of 31 three-inch photomultiplier tubes distributed over the surface of a 0.44 m diameter pressure-resistant glass sphere. The module also includes calibration instruments and electronics for power, readout, and data acquisition. The power board was developed to supply power to all the elements of the digital optical module. The design of the power board began in 2013, and ten prototypes were produced and tested. After an exhaustive validation process in various laboratories within the KM3NeT Collaboration, a mass production batch began, resulting in the construction of over 1200 power boards so far. These boards were integrated in the digital optical modules that have already been produced and deployed, which total 828 as of October 2023. In 2017, an upgrade of the power board, to increase reliability and efficiency, was initiated. The validation of a pre-production series has been completed, and a production batch of 800 upgraded boards is currently underway. This paper describes the design, architecture, upgrade, validation, and production of the power board, including the reliability studies and tests conducted to ensure safe operation at the bottom of the Mediterranean Sea throughout the observatory's lifespan.  
  Address (up) [Aiello, Sebastiano; Bruno, Riccardo; Leonora, Emanuele; Longhitano, Fabio; Randazzo, Nunzio; Sinopoulou, Anna; Tosta e Melo, Iara] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: sebastiano.aiello@ct.infn.it;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001285365000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6233  
Permanent link to this record
 

 
Author Kaur, D.; Khan Chowdhury, N.R.; Rahaman, U. url  doi
openurl 
  Title Effect of non-unitary mixing on the mass hierarchy and CP violation determination at the Protvino to ORCA experiment Type Journal Article
  Year 2024 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 84 Issue 2 Pages 118 - 18pp  
  Keywords  
  Abstract In this paper, we have estimated the neutrino mass ordering and the CP violation sensitivity of the proposed Protvino to ORCA (P2O) experiment after 6 years of data-taking. Both unitary and non-unitary 3x3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\times 3$$\end{document} neutrino mass mixing have been considered in the simulations. A forecast analysis deriving possible future constraints on non-unitary parameters at P2O have been performed.  
  Address (up) [Kaur, Daljeet] Univ Delhi, SGTB Khalsa Coll, New Delhi 110007, India, Email: daljeet.kaur97@gmail.com;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001156042900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5930  
Permanent link to this record
 

 
Author Rahaman, U.; Raut, S.K. url  doi
openurl 
  Title On the tension between the latest NO nu A and T2K data Type Journal Article
  Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 82 Issue 10 Pages 910 - 15pp  
  Keywords  
  Abstract The latest data from the T2K and NO nu A experiments show a tension in their preferred values of the oscillation parameters. In this work, we try to identify the source of the tension between the data from these two experiments. An analysis of their data from various channels (individually, and combined) shows that the tension arises primarily from the nu(e) appearance data, and is compounded by the (nu) over bar (mu) disappearance data. We provide an explanation for the tension based on parameter degeneracies. Apart from the analysis with the standard matter effect, we also analyse the data with the vacuum oscillation hypothesis. We find that vacuum oscillations fit the data as well as matter effects do; and also reduce the tension between the two experiments. We have also done a study of the future run of NO nu A, T2K and DUNE in the context of establishing this tensionwith higher statistical significance.  
  Address (up) [Rahaman, Ushak] Univ Johannesburg, Ctr Astroparticle Phys CAPP, POB 524, ZA-2006 Johannesburg, South Africa, Email: ushakr@uj.ac.za;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000867685200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5385  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva