toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Di Valentino, E. et al; Mena, O. url  doi
openurl 
  Title Snowmass2021-Letter of interest cosmology intertwined I: Perspectives for the next decade Type Journal Article
  Year 2021 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 131 Issue Pages 102606 - 4pp  
  Keywords  
  Abstract The standard Lambda Cold Dark Matter cosmological model provides an amazing description of a wide range of astrophysical and astronomical data. However, there are a few big open questions, that make the standard model look like a first-order approximation to a more realistic scenario that still needs to be fully understood. In this Letter of Interest we will list a few important goals that need to be addressed in the next decade, also taking into account the current discordances present between the different cosmological probes, as the Hubble constant H-0 value, the sigma S-8(8) tension, and the anomalies present in the Planck results. Finally, we will give an overview of upgraded experiments and next-generation space-missions and facilities on Earth that will be of crucial importance to address all these questions.  
  Address (up) [Di Valentino, Eleonora; Chluba, Jens; Harrison, Ian; Hart, Luke; Pace, Francesco] Univ Manchester, JBCA, Manchester, Lancs, England, Email: eleonora.di-valentino@durham.ac.uk  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000657813100003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4856  
Permanent link to this record
 

 
Author Di Valentino, E.; Gariazzo, S.; Giare, W.; Mena, O. url  doi
openurl 
  Title Impact of the damping tail on neutrino mass constraints Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue 8 Pages 083509 - 11pp  
  Keywords  
  Abstract Model-independent mass limits assess the robustness of current cosmological measurements of the neutrino mass scale. Consistency between high-multipole and low-multiple cosmic microwave background observations measuring such scale further valuates the constraining power of present data. We derive here up-to-date limits on neutrino masses and abundances exploiting either the Data Release 4 of the Atacama Cosmology Telescope (ACT) or the South Pole Telescope polarization measurements from SPT-3G, envisaging different nonminimal background cosmologies and marginalizing over them. By combining these high-l observations with supernova Ia, baryon acoustic oscillations (BAO), redshift space distortions (RSD) and a prior on the reionization optical depth fromWMAP data, we find that the marginalized bounds are competitive with those from Planck analyses. We obtain Sigma m(nu) < 0.139 eV and N-eff = 2.82 +/- 0.25 in a dark energy quintessence scenario, both at 95% CL. These limits translate into Sigma m(nu) < 0.20 eV and N-eff = 2.79(-0.28)(+0.30) after marginalizing over a plethora of well-motivated fiducial models. Our findings reassess both the strength and the reliability of cosmological neutrino mass constraints.  
  Address (up) [Di Valentino, Eleonora; Giare, William] Univ Sheffield, Sch Math & Stat, Hounsfield Rd, Sheffield S3 7RH, S Yorkshire, England, Email: e.divalentino@sheffield.ac.uk;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001157784100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5935  
Permanent link to this record
 

 
Author Di Valentino, E.; Giusarma, E.; Lattanzi, M.; Melchiorri, A.; Mena, O. url  doi
openurl 
  Title Axion cold dark matter: Status after Planck and BICEP2 Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 90 Issue 4 Pages 043534 - 11pp  
  Keywords  
  Abstract We investigate the axion dark matter scenario (ADM), in which axions account for all of the dark matter in the Universe, in light of the most recent cosmological data. In particular, we use the Planck temperature data, complemented by WMAP E-polarization measurements, as well as the recent BICEP2 observations of B-modes. Baryon acoustic oscillation data, including those from the baryon oscillation spectroscopic survey, are also considered in the numerical analyses. We find that, in the minimal ADM scenario and for Delta(QCD) = 200 MeV, the full data set implies that the axion mass m(a) = 82.2 +/- 1.1 μeV [corresponding to the Peccei-Quinn symmetry being broken at a scale f(a) = (7.54 +/- 0.10) x 10(10) GeV], or m(a) = 76.6 +/- 2.6 μeV [f(a) = (8.08 +/- 0.27) x 10(10) GeV] when we allow for a nonstandard effective number of relativistic species N-eff. We also find a 2 sigma preference for N-eff > 3.046. The limit on the sum of neutrino masses is Sigma m(v) < 0.25 eV at 95% C.L. for N-eff = 3.046, or Sigma m(v) < 0.47 eV when N-eff is a free parameter. Considering extended scenarios where either the dark energy equation-of-state parameter w, the tensor spectral index n(t), or the running of the scalar index dn(s)/d ln k is allowed to vary does not change significantly the axion mass-energy density constraints. However, in the case of the full data set exploited here, there is a preference for a nonzero tensor index or scalar running, driven by the different tensor amplitudes implied by the Planck and BICEP2 observations. We also study the effect on our estimates of theoretical uncertainties, in particular the imprecise knowledge of the QCD scale Delta(QCD), in the calculation of the temperature-dependent axion mass. We find that in the simplest ADM scenario the Planck + WP data set implies that the axion mass m(a) = 63.7 +/- 1.2 μeV for Delta(QCD) = 400 MeV. We also comment on the possibility that axions do not make up for all the dark matter, or that the contribution of string-produced axions has been grossly underestimated; in that case, the values that we find for the mass can conservatively be considered as lower limits. Dark matter axions with mass in the 60-80 μeV (corresponding to an axion-photon coupling G(a gamma gamma) similar to 10(-14) GeV-1) range can, in principle, be detected by looking for axion-to-photon conversion occurring inside a tunable microwave cavity permeated by a high-intensity magnetic field, and operating at a frequency nu similar or equal to 15-20 GHz. This is out of the reach of current experiments like the axion dark matter experiment (limited to a maximum frequency of a few GHzs), but is, on the other hand, within the reach of the upcoming axion dark matter experiment-high frequency experiment that will explore the 4-40 GHz frequency range and then be sensitive to axion masses up to similar to 160 μeV.  
  Address (up) [Di Valentino, Eleonora; Giusarma, Elena; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000340890100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1893  
Permanent link to this record
 

 
Author Di Valentino, E.; Melchiorri, A.; Mena, O. url  doi
openurl 
  Title Dark radiation sterile neutrino candidates after Planck data Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue 11 Pages 018 - 13pp  
  Keywords cosmological neutrinos; neutrino properties; neutrino theory; dark energy theory  
  Abstract Recent Cosmic Microwave Background (CMB) results from the Planck satellite, combined with previous CMB data and Hubble constant measurements from the Hubble Space Telescope, provide a constraint on the effective number of relativistic degrees of freedom 3.62(-0.48)(+0.50) at 95% CL. New Planck data provide a unique opportunity to place limits on models containing relativistic species at the decoupling epoch. We present here the bounds on sterile neutrino models combining Planck data with galaxy clustering information. Assuming N-eff active plus sterile massive neutrino species, in the case of a Planck+WP+HighL+HST analysis we find m(nu,sterile)(eff) < 0.36 eV and 3.14 < N-eff < 4.15 at 95% CL, while using Planck+WP+HighL data in combination with the full shape of the galaxy power spectrum from the Baryon Oscillation Spectroscopic Survey BOSS Data Relase 9 measurements, we find that 3.30 < N-eff < 4.43 and m(nu,sterile)(eff) < 0.33 eV both at 95% CL with the three active neutrinos having the minimum mass allowed in the normal hierarchy scheme, i.e. Sigma m(nu) similar to 0.06 eV. These values compromise the viability of the (3 + 2) massive sterile neutrino models for the parameter region indicated by global fits of neutrino oscillation data. Within the (3 + 1) massive sterile neutrino scenario, we find m(nu,sterile)(eff) < 0.34 eV at 95% CL. While the existence of one extra sterile massive neutrino state is compatible with current oscillation data, the values for the sterile neutrino mass preferred by oscillation analyses are significantly higher than the current cosmological bound. We review as well the bounds on extended dark sectors with additional light species based on the latest Planck CMB observations.  
  Address (up) [Di Valentino, Eleonora; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy, Email: eleonora.divalentino@roma1.infn.it;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000327843900019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1672  
Permanent link to this record
 

 
Author Di Valentino, E.; Giusarma, E.; Mena, O.; Melchiorri, A.; Silk, J. url  doi
openurl 
  Title Cosmological limits on neutrino unknowns versus low redshift priors Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 93 Issue 8 Pages 083527 - 11pp  
  Keywords  
  Abstract Recent cosmic microwave background (CMB) temperature and polarization anisotropy measurements from the Planck mission have significantly improved previous constraints on the neutrino masses as well as the bounds on extended models with massless or massive sterile neutrino states. However, due to parameter degeneracies, additional low redshift priors are mandatory in order to sharpen the CMB neutrino bounds. We explore here the role of different priors on low redshift quantities, such as the Hubble constant, the cluster mass bias, and the reionization optical depth tau. Concerning current priors on the Hubble constant and the cluster mass bias, the bounds on the neutrino parameters may differ appreciably depending on the choices adopted in the analyses. With regard to future improvements in the priors on the reionization optical depth, a value of tau = 0.05 +/- 0.01, motivated by astrophysical estimates of the reionization redshift, would lead to Sigma m(nu) < 0.0926 eV at 90% C.L., when combining the full Planck measurements, baryon acoustic oscillation, and Planck clusters data, thereby opening the window to unravel the neutrino mass hierarchy with existing cosmological probes.  
  Address (up) [Di Valentino, Eleonora; Silk, Joseph] CNRS, Inst Astrophys Paris, UMR7095, F-75014 Paris, France  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000375203600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2643  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva