toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Di Molfetta, G.; Perez, A. url  doi
openurl 
  Title Quantum walks as simulators of neutrino oscillations in a vacuum and matter Type Journal Article
  Year 2016 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 18 Issue Pages 103038 - 8pp  
  Keywords quantum walks; neutrino oscillations; quantum simulation  
  Abstract We analyze the simulation of Dirac neutrino oscillations using quantum walks, both in a vacuum and in matter. We show that this simulation, in the continuum limit, reproduces a set of coupled Dirac equations that describe neutrino flavor oscillations, and we make use of this to establish a connection with neutrino phenomenology, thus allowing one to fix the parameters of the simulation for a given neutrino experiment. We also analyze how matter effects for neutrino propagation can be simulated in the quantum walk. In this way, important features, such as the MSW effect, can be incorporated. Thus, the simulation of neutrino oscillations with the help of quantum walks might be useful to illustrate these effects in extreme conditions, such as the solar interior or supernovae.  
  Address (up) [Di Molfetta, G.] Univ Valencia, CSIC, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain, Email: giuseppe.dimolfetta@lif.univ-mrs.fr  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000386816100004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2846  
Permanent link to this record
 

 
Author Di Molfetta, G.; Soares-Pinto, D.O.; Duarte Queiros, S.M. url  doi
openurl 
  Title Elephant quantum walk Type Journal Article
  Year 2018 Publication Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 97 Issue 6 Pages 062112 - 6pp  
  Keywords  
  Abstract We introduce an analytically treatable discrete time quantum walk in a one-dimensional lattice which combines non-Markovianity and hyperballistic diffusion associated with a Gaussian whose variance sigma(2)(t) grows cubicly with time sigma alpha t(3). These properties have have been numerically found in several systems, namely, tight-binding lattice models. For its rules, our model can be understood as the quantum version of the classical non-Markovian “elephant random walk” process for which the quantum coin operator only changes the value of the diffusion constant although, contrarily, to the classical coin.  
  Address (up) [Di Molfetta, Giuseppe] Univ Toulon & Var, Aix Marseille Univ, Nat Computat Res Grp, CNRS,LIS, Marseille, France, Email: giuseppe.dimolfetta@lis-lab.fr  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000435076800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3625  
Permanent link to this record
 

 
Author Hatifi, M.; Di Molfetta, G.; Debbasch, F.; Brachet, M. url  doi
openurl 
  Title Quantum walk hydrodynamics Type Journal Article
  Year 2019 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 9 Issue Pages 2989 - 7pp  
  Keywords  
  Abstract A simple Discrete-Time Quantum Walk (DTQW) on the line is revisited and given an hydrodynamic interpretation through a novel relativistic generalization of the Madelung transform. Numerical results show that suitable initial conditions indeed produce hydrodynamical shocks and that the coherence achieved in current experiments is robust enough to simulate quantum hydrodynamical phenomena through DTQWs. An analytical computation of the asymptotic quantum shock structure is presented. The non-relativistic limit is explored in the Supplementary Material (SM).  
  Address (up) [Hatifi, Mohamed] Aix Marseille Univ, CNRS, Ecole Cent Marseille, Inst Fresnel,UMR 7249, F-13013 Marseille, France, Email: giuseppe.dimolfetta@lis-lab.fr  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000459799800138 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3923  
Permanent link to this record
 

 
Author Marquez-Martin, I.; Di Molfetta, G.; Perez, A. url  doi
openurl 
  Title Fermion confinement via quantum walks in (2+1)-dimensional and (3+1)-dimensional space-time Type Journal Article
  Year 2017 Publication Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 95 Issue 4 Pages 042112 - 5pp  
  Keywords  
  Abstract We analyze the properties of a two-and three-dimensional quantum walk that are inspired by the idea of a brane-world model put forward by Rubakov and Shaposhnikov [Phys. Lett. B 125, 136 (1983)]. In that model, particles are dynamically confined on the brane due to the interaction with a scalar field. We translated this model into an alternate quantum walk with a coin that depends on the external field, with a dependence which mimics a domain wall solution. As in the original model, fermions (in our case, the walker) become localized in one of the dimensions, not from the action of a random noise on the lattice (as in the case of Anderson localization) but from a regular dependence in space. On the other hand, the resulting quantum walk can move freely along the “ordinary” dimensions.  
  Address (up) [Marquez-Martin, I.; Di Molfetta, G.; Perez, A.] Univ Valencia, CSIC, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain, Email: giuseppe.dimolfetta@lif.univ-mrs.fr  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000399931500006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3102  
Permanent link to this record
 

 
Author Marquez-Martin, I.; Arnault, P.; Di Molfetta, G.; Perez, A. url  doi
openurl 
  Title Electromagnetic lattice gauge invariance in two-dimensional discrete-time quantum walks Type Journal Article
  Year 2018 Publication Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 98 Issue 3 Pages 032333 - 8pp  
  Keywords  
  Abstract Gauge invariance is one of the more important concepts in physics. We discuss this concept in connection with the unitary evolution of discrete-time quantum walks in one and two spatial dimensions, when they include the interaction with synthetic, external electromagnetic fields. One introduces this interaction as additional phases that play the role of gauge fields. Here, we present a way to incorporate those phases, which differs from previous works. Our proposal allows the discrete derivatives, that appear under a gauge transformation, to treat time and space on the same footing, in a way which is similar to standard lattice gauge theories. By considering two steps of the evolution, we define a density current which is gauge invariant and conserved. In the continuum limit, the dynamics of the particle, under a suitable choice of the parameters, becomes the Dirac equation and the conserved current satisfies the corresponding conservation equation.  
  Address (up) [Marquez-Martin, Ivan; Arnault, Pablo; Di Molfetta, Giuseppe; Perez, Armando] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain, Email: ivan.marquez@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000446163200006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3750  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva