|   | 
Details
   web
Records
Author n_TOF Collaboration (Giubrone, G. et al); Tain, J.L.
Title The Role of Fe and Ni for S-process Nucleosynthesis and Innovative Nuclear Technologies Type Journal Article
Year 2011 Publication Journal of the Korean Physical Society Abbreviated Journal J. Korean Phys. Soc.
Volume 59 Issue 2 Pages 2106-2109
Keywords Neutron capture cross sections; Neutron time of flight facility; C(6)D(6) detectors; Pulse height weighting technique; Nuclear astrophysics; Advanced nuclear systems
Abstract The accurate measurement of neutron capture cross sections of all Fe and Ni isotopes is important for disentangling the contribution of the s-process and the r-process to the stellar nucleosynthesis of elements in the mass range 60 < A < 120. At the same time, Fe and Ni are important components of structural materials and improved neutron cross section data is relevant in the design of new nuclear systems. With the aim of obtaining improved capture data on all stable iron and nickel isotopes, a program of measurements has been launched at the CERN Neutron Time of Flight Facility n_TOF.
Address (down) [Giubrone, G; Tain, JL] Univ Valencia, Inst Fis Corpuscular, CSIC, E-46003 Valencia, Spain, Email: tain@ific.uv.es
Corporate Author Thesis
Publisher Korean Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0374-4884 ISBN Medium
Area Expedition Conference
Notes WOS:000294080700158 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 743
Permanent link to this record
 

 
Author Belver, D.; Cabanelas, P.; Castro, E.; Garzon, J.A.; Gil, A.; Gonzalez-Diaz, D.; Koenig, W.; Traxler, M.
Title Performance of the Low-Jitter High-Gain/Bandwidth Front-End Electronics of the HADES tRPC Wall Type Journal Article
Year 2010 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 57 Issue 5 Pages 2848-2856
Keywords Charge to width algorithm; fast amplifying and digitizing electronics; front-end electronics; HADES; time of flight; timing RPC
Abstract A front-end electronics (FEE) chain for accurate time measurements has been developed for the new Resistive Plate Chamber (RPC)-based Time-of-Flight (TOF) wall of the High Acceptance Di-Electron Spectrometer (HADES). The wall covers an area of around 8 m(2) divided in 6 sectors. In total, 1122 4-gap timing RPC cells are read-out by 2244 time and charge sensitive channels. The FEE chain consists of 2 custom-made boards: a 4-channel Daughter BOard(DBO) and a 32-channel MotherBOard (MBO). The DBO uses a fast 2 GHz amplifier feeding a dual high-speed discriminator. The time and charge information are encoded, respectively, in the leading edge and the width of an LVDS signal. Each MBO houses up to 8 DBOs providing them regulated voltage supply, threshold values via DACs, test signals and, additionally, routing out a signal proportional to the channel multiplicity needed for a 1st level trigger decision. The MBO delivers LVDS signals to a multi-purpose Trigger Readout Board (TRB) for data acquisition. The FEE allows achieving a system resolution around 75 ps fulfilling comfortably the requirements of the HADES upgrade [1]. The commissioning of the whole RPC wall is finished and the 6 sectors are already mounted in their final position in the HADES spectrometer and ready to take data during the beam-times foreseen for 2010.
Address (down) [Belver, Daniel; Cabanelas, P.; Castro, E.; Garzon, J. A.] Univ Santiago Compostela, LabCAF, Santiago De Compostela 15782, Spain, Email: daniel.belver@usc.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes ISI:000283440400007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 349
Permanent link to this record