|   | 
Details
   web
Records
Author Ellis, J.; Madigan, M.; Mimasu, K.; Sanz, V.; You, T.
Title Top, Higgs, diboson and electroweak fit to the Standard Model effective field theory Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 279 - 78pp
Keywords Effective Field Theories; Beyond Standard Model; Higgs Physics
Abstract The search for effective field theory deformations of the Standard Model (SM) is a major goal of particle physics that can benefit from a global approach in the framework of the Standard Model Effective Field Theory (SMEFT). For the first time, we include LHC data on top production and differential distributions together with Higgs production and decay rates and Simplified Template Cross-Section (STXS) measurements in a global fit, as well as precision electroweak and diboson measurements from LEP and the LHC, in a global analysis with SMEFT operators of dimension 6 included linearly. We present the constraints on the coefficients of these operators, both individually and when marginalised, in flavour-universal and top-specific scenarios, studying the interplay of these datasets and the correlations they induce in the SMEFT. We then explore the constraints that our linear SMEFT analysis imposes on specific ultra-violet completions of the Standard Model, including those with single additional fields and low-mass stop squarks. We also present a model-independent search for deformations of the SM that contribute to between two and five SMEFT operator coefficients. In no case do we find any significant evidence for physics beyond the SM. Our underlying Fitmaker public code provides a framework for future generalisations of our analysis, including a quadratic treatment of dimension-6 operators.
Address (up) [Ellis, John; Mimasu, Ken] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England, Email: john.ellis@cern.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000658918100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4857
Permanent link to this record
 

 
Author Ellis, J.; Hodgkinson, R.N.; Lee, J.S.; Pilaftsis, A.
Title Flavour geometry and effective Yukawa couplings in the MSSM Type Journal Article
Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 016 - 35pp
Keywords Supersymmetric Standard Model; B-Physics
Abstract We present a new geometric approach to the flavour decomposition of an arbitrary soft supersymmetry-breaking sector in the MSSM. Our approach is based on the geometry that results from the quark and lepton Yukawa couplings, and enables us to derive the necessary and sufficient conditions for a linearly-independent basis of matrices related to the completeness of the internal [SU(3) circle times U(1)](5) flavour space. In a second step, we calculate the effective Yukawa couplings that are enhanced at large values of tan beta for general soft supersymmetry-breaking mass parameters. We highlight the contributions due to non-universal terms in the flavour decompositions of the sfermion mass matrices. We present numerical examples illustrating how such terms are induced by renormalization-group evolution starting from universal input boundary conditions, and demonstrate their importance for the flavour-violating effective Yukawa couplings of quarks.
Address (up) [Ellis, John] CERN, Div Theory, CH-1211 Geneva 23, Switzerland, Email: John.Ellis@cern.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000275223100016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 482
Permanent link to this record