|   | 
Details
   web
Records
Author Albiol, A.; Corbi, A.; Albiol, F.
Title Automatic intensity windowing of mammographic images based on a perceptual metric Type Journal Article
Year 2017 Publication Medical Physics Abbreviated Journal Med. Phys.
Volume 44 Issue 4 Pages 1369-1378
Keywords contrast stretching; Gabor filtering; human visual system; mammogram; mutual information; window level/width
Abstract Purpose: Initial auto-adjustment of the window level WL and width WW applied to mammographic images. The proposed intensity windowing (IW) method is based on the maximization of the mutual information (MI) between a perceptual decomposition of the original 12-bit sources and their screen displayed 8-bit version. Besides zoom, color inversion and panning operations, IW is the most commonly performed task in daily screening and has a direct impact on diagnosis and the time involved in the process. Methods: The authors present a human visual system and perception-based algorithm named GRAIL (Gabor-relying adjustment of image levels). GRAIL initially measures a mammogram's quality based on the MI between the original instance and its Gabor-filtered derivations. From this point on, the algorithm performs an automatic intensity windowing process that outputs the WL/WW that best displays each mammogram for screening. GRAIL starts with the default, high contrast, wide dynamic range 12-bit data, and then maximizes the graphical information presented in ordinary 8-bit displays. Tests have been carried out with several mammogram databases. They comprise correlations and an ANOVA analysis with the manual IW levels established by a group of radiologists. A complete MATLAB implementation of GRAIL is available at . Results: Auto-leveled images show superior quality both perceptually and objectively compared to their full intensity range and compared to the application of other common methods like global contrast stretching (GCS). The correlations between the human determined intensity values and the ones estimated by our method surpass that of GCS. The ANOVA analysis with the upper intensity thresholds also reveals a similar outcome. GRAIL has also proven to specially perform better with images that contain micro-calcifications and/or foreign X-ray-opaque elements and with healthy BI-RADS A-type mammograms. It can also speed up the initial screening time by a mean of 4.5 s per image. Conclusions: A novel methodology is introduced that enables a quality-driven balancing of the WL/WW of mammographic images. This correction seeks the representation that maximizes the amount of graphical information contained in each image. The presented technique can contribute to the diagnosis and the overall efficiency of the breast screening session by suggesting, at the beginning, an optimal and customized windowing setting for each mammogram.
Address (down) [Albiol, Alberto] Univ Politecn Valencia, iTeam Res Inst, Valencia, Spain, Email: alberto.corbi@ific.uv.es
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-2405 ISBN Medium
Area Expedition Conference
Notes WOS:000400572700016 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3122
Permanent link to this record
 

 
Author Albiol, A.; Albiol, F.; Paredes, R.; Plasencia-Martinez, J.M.; Blanco Barrio, A.; Garcia Santos, J.M.; Tortajada, S.; Gonzalez Montano, V.M.; Rodriguez Godoy, C.E.; Fernandez Gomez, S.; Oliver-Garcia, E.; de la Iglesia Vaya, M.; Marquez Perez, F.L.; Rayo Madrid, J.I.
Title A comparison of Covid-19 early detection between convolutional neural networks and radiologists Type Journal Article
Year 2022 Publication Insights into Imaging Abbreviated Journal Insights Imaging
Volume 13 Issue 1 Pages 122 - 12pp
Keywords Deep learning; Covid-19; Radiology
Abstract Background The role of chest radiography in COVID-19 disease has changed since the beginning of the pandemic from a diagnostic tool when microbiological resources were scarce to a different one focused on detecting and monitoring COVID-19 lung involvement. Using chest radiographs, early detection of the disease is still helpful in resource-poor environments. However, the sensitivity of a chest radiograph for diagnosing COVID-19 is modest, even for expert radiologists. In this paper, the performance of a deep learning algorithm on the first clinical encounter is evaluated and compared with a group of radiologists with different years of experience. Methods The algorithm uses an ensemble of four deep convolutional networks, Ensemble4Covid, trained to detect COVID-19 on frontal chest radiographs. The algorithm was tested using images from the first clinical encounter of positive and negative cases. Its performance was compared with five radiologists on a smaller test subset of patients. The algorithm's performance was also validated using the public dataset COVIDx. Results Compared to the consensus of five radiologists, the Ensemble4Covid model achieved an AUC of 0.85, whereas the radiologists achieved an AUC of 0.71. Compared with other state-of-the-art models, the performance of a single model of our ensemble achieved nonsignificant differences in the public dataset COVIDx. Conclusion The results show that the use of images from the first clinical encounter significantly drops the detection performance of COVID-19. The performance of our Ensemble4Covid under these challenging conditions is considerably higher compared to a consensus of five radiologists. Artificial intelligence can be used for the fast diagnosis of COVID-19.
Address (down) [Albiol, Alberto] Univ Politecn Valencia, iTeam Inst, ETSI Telecomunicac, Camino Vera S-N, Valencia 46022, Spain, Email: alalbiol@iteam.upv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1869-4101 ISBN Medium
Area Expedition Conference
Notes WOS:000832727200003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5302
Permanent link to this record