toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Câmara, H.B.; Joaquim, F.R.; Valle, J.W.F. url  doi
openurl 
  Title Dark-sector seeded solution to the strong CP problem Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue 9 Pages 095003 - 6pp  
  Keywords  
  Abstract We propose a novel realization of the Nelson-Barr mechanism “seeded” by a dark sector containing scalars and vectorlike quarks. Charge parity (CP) and a Z8 symmetry are spontaneously broken by the complex vacuum expectation value of a singlet scalar, leaving a residual Z2 symmetry that stabilizes dark matter (DM). A complex Cabibbo-Kobayashi-Maskawa matrix arises via one-loop corrections to the quark mass matrix mediated by the dark sector. In contrast with other proposals where nonzero contributions to the strong CP phase arise at the one-loop level, in our case this occurs only at two loops, enhancing naturalness. Our scenario also provides a viable weakly interacting massive particle scalar DM candidate.  
  Address (up) [Camara, H. B.; Joaquim, F. R.] Univ Tecn Lisboa, Inst Super Tecn, Dept Fis, P-1049001 Lisbon, Portugal, Email: henrique.b.camara@tecnico.ulisboa.pt;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001115232100004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5840  
Permanent link to this record
 

 
Author Cañas, B.C.; Garces, E.A.; Miranda, O.G.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title The weak mixing angle from low energy neutrino measurements: A global update Type Journal Article
  Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 761 Issue Pages 450-455  
  Keywords  
  Abstract Taking into account recent theoretical and experimental inputs on reactor fluxes we reconsider the determination of the weak mixing angle from low energy experiments. We perform a global analysis to all available neutrino-electron scattering data from reactor antineutrino experiments, obtaining sin(2) theta(W) = 0.252 +/- 0.030. We discuss the impact of the new theoretical prediction for the neutrino spectrum, the new measurement of the reactor antineutrino spectrum by the Daya Bay collaboration, as well as the effect of radiative corrections. We also reanalyze the measurements of the nu(e) – e cross section at accelerator experiments including radiative corrections. By combining reactor and accelerator data we obtain an improved determination for the weak mixing angle, sin(2) theta(W) = 0.254 +/- 0.024.  
  Address (up) [Canas, B. C.; Miranda, O. G.] Ctr Invest Estudios Avanzados IPN, Dept Fis, Apdo Postal 14-740, Mexico City 07000, DF, Mexico, Email: bcorduz@fis.cinvestav.mx;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000384469900064 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2940  
Permanent link to this record
 

 
Author Cañas, B.C.; Miranda, O.G.; Parada, A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Updating neutrino magnetic moment constraints Type Journal Article
  Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 753 Issue Pages 191-198  
  Keywords  
  Abstract In this paper we provide an updated analysis of the neutrino magnetic moments (NMMs), discussing both the constraints on the magnitudes of the three transition moments Lambda(i) and the role of the CP violating phases present both in the mixing matrix and in the NMM matrix. The scattering of solar neutrinos off electrons in Borexino provides the most stringent restrictions, due to its robust statistics and the low energies observed, below 1 MeV. Our new limit on the effective neutrino magnetic moment which follows from the most recent Borexino data is 3.1 x 10(-11) mu(B) at 90% C.L. This corresponds to the individual transition magnetic moment constraints: vertical bar Lambda(1)vertical bar <= 5.6 x10(-11)mu(B), vertical bar Lambda(2)vertical bar <= 4.0 x10(-11)mu(B), and vertical bar Lambda(3)vertical bar <= 3.1 x10(-11)mu B(90% C. L.), irrespective of any complex phase. Indeed, the incoherent admixture of neutrino mass eigenstates present in the solar flux makes Borexino insensitive to the Majorana phases present in the NMM matrix. For this reason we also provide a global analysis including the case of reactor and accelerator neutrino sources, presenting the resulting constraints for different values of the relevant CP phases. Improved reactor and accelerator neutrino experiments will be needed in order to underpin the full profile of the neutrino electromagnetic properties.  
  Address (up) [Canas, B. C.; Miranda, O. G.] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Fis, Apdo Postal 14-740, Mexico City 07000, DF, Mexico, Email: bcorduz@fis.cinvestav.mx;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000368783600029 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2551  
Permanent link to this record
 

 
Author Carcamo Hernandez, A.E.; Kovalenko, S.; Valle, J.W.F.; Vaquera-Araujo, C.A. url  doi
openurl 
  Title Neutrino predictions from a left-right symmetric flavored extension of the standard model Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 065 - 24pp  
  Keywords Beyond Standard Model; Discrete Symmetries; Neutrino Physics; Quark Masses and SM Parameters  
  Abstract We propose a left-right symmetric electroweak extension of the Standard Model based on the Delta (27) family symmetry. The masses of all electrically charged Standard Model fermions lighter than the top quark are induced by a Universal Seesaw mechanism mediated by exotic fermions. The top quark is the only Standard Model fermion to get mass directly from a tree level renormalizable Yukawa interaction, while neutrinos are unique in that they get calculable radiative masses through a low-scale seesaw mechanism. The scheme has generalized μ- tau symmetry and leads to a restricted range of neutrino oscillations parameters, with a nonzero neutrinoless double beta decay amplitude lying at the upper ranges generically associated to normal and inverted neutrino mass ordering.  
  Address (up) [Carcamo Hernandez, A. E.; Kovalenko, Sergey] Univ Tecn Federico Santa Maria, Casilla 110-5, Valparaiso, Chile, Email: antonio.carcamo@usm.cl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000459168900003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3917  
Permanent link to this record
 

 
Author Carcamo Hernandez, A.E.; Kovalenko, S.; Valle, J.W.F.; Vaquera-Araujo, C.A. url  doi
openurl 
  Title Predictive Pati-Salam theory of fermion masses and mixing Type Journal Article
  Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 118 - 25pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract We propose a Pati-Salam extension of the standard model incorporating a flavor symmetry based on the Delta (27) group. The theory realizes a realistic Froggatt-Nielsen picture of quark mixing and a predictive pattern of neutrino oscillations. We find that, for normal neutrino mass ordering, the atmospheric angle must lie in the higher octant, CP must be violated in oscillations, and there is a lower bound for the 0 nu beta beta decay rate. For the case of inverted mass ordering, we find that the lower atmospheric octant is preferred, and that CP can be conserved in oscillations. Neutrino masses arise from a low-scale seesaw mechanism, whose messengers can be produced by a Z' portal at the LHC.  
  Address (up) [Carcamo Hernandez, A. E.; Kovalenko, Sergey] Univ Tecn Federico Santa Maria, Casilla 110-V, Valparaiso, Chile, Email: antonio.carcamo@usm.cl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000406883100006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3237  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva