toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fallot, M.; Cormon, S.; Estienne, M.; Algora, A.; Bui, V.M.; Cucoanes, A.; Elnimr, M.; Giot, L.; Jordan, D.; Martino, J.; Onillon, A.; Porta, A.; Pronost, G.; Remoto, A.; Tain, J.L.; Yermia, F.; Zakari-Issoufou, A.A. url  doi
openurl 
  Title New Antineutrino Energy Spectra Predictions from the Summation of Beta Decay Branches of the Fission Products Type Journal Article
  Year 2012 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 109 Issue 20 Pages 202504 - 5pp  
  Keywords  
  Abstract In this Letter, we study the impact of the inclusion of the recently measured beta decay properties of the Tc-102;104;105;106;107, Mo-105, and Nb-101 nuclei in an updated calculation of the antineutrino energy spectra of the four fissible isotopes U-235,U-238 and Pu-239,Pu-241. These actinides are the main contributors to the fission processes in pressurized water reactors. The beta feeding probabilities of the above-mentioned Tc, Mo, and Nb isotopes have been found to play a major role in the gamma component of the decay heat of Pu-239, solving a large part of the gamma discrepancy in the 4-3000 s range. They have been measured by using the total absorption technique, insensitive to the pandemonium effect. The calculations are performed by using the information available nowadays in the nuclear databases, summing all the contributions of the beta decay branches of the fission products. Our results provide a new prediction of the antineutrino energy spectra of U-235, Pu-239,Pu-241, and, in particular, U-238 for which no measurement has been published yet. We conclude that new total absorption technique measurements are mandatory to improve the reliability of the predicted spectra.  
  Address (up) [Fallot, M.; Cormon, S.; Estienne, M.; Bui, V. M.; Cucoanes, A.; Elnimr, M.; Giot, L.; Martino, J.; Onillon, A.; Porta, A.; Pronost, G.; Remoto, A.; Yermia, F.; Zakari-Issoufou, A. -A.] Univ Nantes, Ecole Mines Nantes, CNRS, IN2P3,SUBATECH, F-44307 Nantes, France  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000310991700009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1250  
Permanent link to this record
 

 
Author n_TOF Collaboration (Fraval, K. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L. doi  openurl
  Title Measurement and analysis of the Am-241(n,gamma) cross section with liquid scintillator detectors using time-of-flight spectroscopy at the n_TOF facility at CERN Type Journal Article
  Year 2014 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 89 Issue 4 Pages 044609 - 14pp  
  Keywords  
  Abstract The Am-241(n,gamma) cross section has been measured at the n_TOF facility at CERN using deuterated benzene liquid scintillators, commonly known as C6D6 detectors, and time-of-flight spectrometry. The results in the resolved resonance range bring new constraints to evaluations below 150 eV, and the energy upper limit was extended from 150 to 320 eV with a total of 172 new resonances not present in current evaluations. The thermal capture cross section was found to be sigma(th) = 678 +/- 68 b, which is in good agreement with evaluations and most previous measurements. The capture cross section in the unresolved resonance region was extracted in the remaining energy range up to 150 keV, and found to be larger than current evaluations and previous measurements.  
  Address (up) [Fraval, K.; Gunsing, F.; Belloni, F.; Berthoumieux, E.; Lampoudis, C.] CEA Saclay, Irfu, F-91191 Gif Sur Yvette, France, Email: frank.gunsing@cea.fr  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000335321400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1778  
Permanent link to this record
 

 
Author n_TOF Collaboration (Fujii, K. et al); Domingo-Pardo, C.; Tain, J.L. doi  openurl
  Title Neutron physics of the Re/Os clock. III. Resonance analyses and stellar (n, gamma) cross sections of Os-186,Os-187,Os-188 Type Journal Article
  Year 2010 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 82 Issue 1 Pages 015804 - 18pp  
  Keywords  
  Abstract Neutron resonance analyses have been performed for the capture cross sections of Os-186, Os-187, and Os-188 measured at the n_TOF facility at CERN. Resonance parameters have been extracted up to 5, 3, and 8 keV, respectively, using the SAMMY code for a full R-matrix fit of the capture yields. From these results average resonance parameters were derived by a statistical analysis to provide a comprehensive experimental basis for modeling of the stellar neutron capture rates of these isotopes in terms of the Hauser-Feshbach statistical model. Consistent calculations for the capture and inelastic reaction channels are crucial for the evaluation of stellar enhancement factors to correct the Maxwellian averaged cross sections obtained from experimental data for the effect of thermally populated excited states. These factors have been calculated for the full temperature range of current scenarios of s-process nucleosynthesis using the combined information of the experimental data in the region of resolved resonances and in the continuum. The consequences of this analysis for the s-process component of the Os-187 abundance and the related impact on the evaluation of the time duration of galactic nucleosynthesis via the Re/Os cosmochronometer are discussed.  
  Address (up) [Fujii, K.; Abbondanno, U.; Belloni, F.; Milazzo, P. M.; Moreau, C.] Ist Nazl Fis Nucl, I-34149 Trieste, Italy, Email: Kaori.Fujii@ts.infn.it  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000279940200009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 410  
Permanent link to this record
 

 
Author Garcia, A.R.; Martinez, T.; Cano-Ott, D.; Castilla, J.; Guerrero, C.; Marin, J.; Martinez, G.; Mendoza, E.; Ovejero, M.C.; Reillo, E.M.; Santos, C.; Tera, F.J.; Villamarin, D.; Nolte, R.; Agramunt, J.; Algora, A.; Tain, J.L.; Banerjee, K.; Bhattacharya, C.; Pentilla, H.; Rinta-Antila, S.; Gorelov, D. doi  openurl
  Title MONSTER: a time of flight spectrometer for beta-delayed neutron emission measurements Type Journal Article
  Year 2012 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 7 Issue Pages C05012 - 12pp  
  Keywords Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators); Instrumentation and methods for time-of-flight (TOF) spectroscopy; Neutron detectors (cold, thermal, fast neutrons)  
  Abstract The knowledge of the beta-decay properties of nuclei contributes decisively to our understanding of nuclear phenomena: the beta-delayed neutron emission of neutron rich nuclei plays an important role in the nucleosynthesis r-process and constitutes a probe for nuclear structure of very neutron rich nuclei providing information about the high energy part of the full beta strength (S-beta) function. In addition, beta-delayed neutrons are essential for the control and safety of nuclear reactors. In order to determine the neutron energy spectra and emission probabilities from neutron precursors a MOdular Neutron time-of-flight SpectromeTER (MONSTER) has been proposed for the DESPEC experiment at the future FAIR facility. The design of MONSTER and status of its construction are reported in this work.  
  Address (up) [Garcia, A. R.; Martinez, T.; Cano-Ott, D.; Castilla, J.; Guerrero, C.; Marin, J.; Martinez, G.; Mendoza, E.; Ovejero, M. C.; Reillo, E. M.; Santos, C.; Tera, F. J.; Villamarin, D.] Ctr Invest Energet MedioAmbientales & Tecnol CIEM, E-28040 Madrid, Spain, Email: trino.martinez@ciemat.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000305419700013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1084  
Permanent link to this record
 

 
Author Garcia, A.R.; Mendoza, E.; Cano-Ott, D.; Nolte, R.; Martinez, T.; Algora, A.; Tain, J.L.; Banerjee, K.; Bhattacharya, C. doi  openurl
  Title New physics model in GEANT4 for the simulation of neutron interactions with organic scintillation detectors Type Journal Article
  Year 2017 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 868 Issue Pages 73-81  
  Keywords Organic scintillator; Neutron detectors; GEANT4; BC501A; NE213; EJ301  
  Abstract The accurate determination of the response function of organic scintillation neutron detectors complements their experimental characterization. Monte Carlo simulations with GEANT4 can reduce the effort and cost implied, especially for complex detection systems for which the characterization is more challenging. Previous studies have reported on the inaccuracy of GEANT4 in the calculation of the neutron response of organic scintillation detectors above 6 MeV, due to an incomplete description of the neutron-induced alpha production reactions on carbon. We have improved GEANT4 in this direction by incorporating models and data from NRESP, an excellent Monte Carlo simulation tool developed at the Physikalisch-Technische Bundesanstalt (PTB), Germany, for the specific purpose of calculating the neutron response function of organic scintillation detectors. The results have been verified against simulations with NRESP and validated against Time-Of-Flight measurements with an NE213 detector at PTB. This work has potential applications beyond organic scintillation detectors, to other types of detectors where reactions induced by fast neutrons on carbon require an accurate description.  
  Address (up) [Garcia, A. R.; Mendoza, E.; Cano-Ott, D.; Martinez, T.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Ave Complutense 40, Madrid 28040, Spain, Email: daniel.cano@ciemat.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000408406700012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3250  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva