toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Herrero-Brocal, A.; Vicente, A. url  doi
openurl 
  Title The majoron coupling to charged leptons Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue 1 Pages 078 - 33pp  
  Keywords Axions and ALPs; Baryon/Lepton Number Violation; Lepton Flavour Violation (charged)  
  Abstract The particle spectrum of all Majorana neutrino mass models with spontaneous violation of global lepton number include a Goldstone boson, the so-called majoron. The presence of this massless pseudoscalar changes the phenomenology dramatically. In this work we derive general analytical expressions for the 1-loop coupling of the majoron to charged leptons. These can be applied to any model featuring a majoron that have a clear hierarchy of energy scales, required for an expansion in powers of the low-energy scale to be valid. We show how to use our general results by applying them to some example models, finding full agreement with previous results in several popular scenarios and deriving novel ones in other setups.  
  Address (up) [Herrero-Brocal, Antonio; Vicente, Avelino] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cientif Paterna,C-Catedrat Jose Beltran,2, E-46980 Valencia, Spain, Email: antonio.herrero@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001143228100004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5909  
Permanent link to this record
 

 
Author Bartl, A.; Eberl, H.; Herrmann, B.; Hidaka, K.; Majerotto, W.; Porod, W. url  doi
openurl 
  Title Impact of squark generation mixing on the search for squarks decaying into fermions at LHC Type Journal Article
  Year 2011 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 698 Issue 5 Pages 380-388  
  Keywords Supersymmetry; Squark; Flavour violation; LHC  
  Abstract We study the effect of squark generation mixing on squark production and decays at LHC in the Minimal Supersymmetric Standard Model (MSSM). We show that the effect can be very large despite the very strong constraints on quark-flavour violation (QFV) from experimental data on B mesons. We find that the two lightest up-type squarks (u) over bar (1.2) can have large branching ratios for the decays into c (chi) over bar (0)(1) and t (chi) over bar (0)(1) at the same time due to squark generation mixing, leading to QFV signals 'pp -> c (t) over bar (t (c) over bar) + missing-E-T + X' with a significant rate. The observation of this remarkable signature would provide a powerful test of supersymmetric QFV at LHC. This could have a significant impact on the search for squarks and the determination of the underlying MSSM parameters.  
  Address (up) [Hidaka, K.] Tokyo Gakugei Univ, Dept Phys, Tokyo 1848501, Japan, Email: hidaka@u-gakugei.ac.jp  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000290185500005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 630  
Permanent link to this record
 

 
Author Hidalgo-Duque, C.; Nieves, J.; Pavon Valderrama, M. url  doi
openurl 
  Title Heavy quark spin symmetry and SU(3)-flavour partners of the X (3872) Type Journal Article
  Year 2013 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A  
  Volume 914 Issue Pages 482-487  
  Keywords Heavy quark spin and flavour symmetries; Hidden charm molecules; XYZ states  
  Abstract In this work, an Effective Field Theory (EFT) incorporating light SU(3)-flavour and heavy quark spin symmetries is used to describe charmed meson-antimeson bound states. At Lowest Order (LO), this means that only contact range interactions among the heavy meson and antimeson fields are involved. Besides, the isospin violating decays of the X(3872) will be used to constrain the interaction between the D and a (D) over bar* mesons in the isovector channel. Finally, assuming that the X(3915) and Y(4140) resonances are D* (D) over bar* and D-s* (D) over bar (s)* molecular states, we can determine the four Low Energy Constants (LECs) of the EFT that appear at LO and, therefore, the full spectrum of molecular states with isospin I = 0, 1/2 and 1.  
  Address (up) [Hidalgo-Duque, C.; Nieves, J.] Univ Valencia, Inst Fis Corpuscular IFIC, Inst Invest Paterna, Ctr Mixto CSIC, E-46071 Valencia, Spain, Email: carloshd@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-9474 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000324847700068 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1600  
Permanent link to this record
 

 
Author Lattanzi, M.; Lineros, R.A.; Taoso, M. url  doi
openurl 
  Title Connecting neutrino physics with dark matter Type Journal Article
  Year 2014 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 16 Issue Pages 125012 - 19pp  
  Keywords neutrinos; dark matter; flavour; majoron; sterile neutrinos  
  Abstract The origin of neutrino masses and the nature of dark matter are two in most pressing open questions in modern astro-particle physics. We consider here the possibility that these two problems are related, and review some theoretical scenarios which offer common solutions. A simple possibility is that the dark matter particle emerges in minimal realizations of the seesaw mechanism, as in the majoron and sterile neutrino scenarios. We present the theoretical motivation for both models and discuss their phenomenology, confronting the predictions of these scenarios with cosmological and astrophysical observations. Finally, we discuss the possibility that the stability of dark matter originates from a flavor symmetry of the leptonic sector. We review a proposal based on an A(4) flavor symmetry.  
  Address (up) [Lattanzi, Massimiliano] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy, Email: lattanzi@fe.infn.it;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000346823200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2062  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanderswood, I. url  doi
openurl 
  Title First observation and branching fraction measurement of the Λb0 → Ds- p decay Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 075 - 23pp  
  Keywords B Physics; Branching fraction; Flavour Physics; Hadron-Hadron Scattering  
  Abstract The first observation of the Lambda(0)(b) -> D-s(-) p decay is presented using proton-proton collision data collected by the LHCb experiment at a centre-of-mass energy of root s = 13TeV, corresponding to a total integrated luminosity of 6 fb(-1). Using the Lambda(0)(b) -> Lambda(+pi-)(c) decay as the normalisation mode, the branching fraction of the Lambda(0)(b) -> D-s(-) p decay is measured to be B (Lambda(0)(b) -> D-s(-) p) = (12.6 +/- 0.5 +/- 0.3 +/- 1.2) x 10(-6), where the first uncertainty is statistical, the second systematic and the third due to uncertainties in the branching fractions of the Lambda(0)(b) -> Lambda(+pi-)(c), D-s(-) -> K-K+pi(-) and Lambda(+)(c) -> pK(-)pi(+) decays.  
  Address (up) [Leite, J. Baptista de Souza; Bediaga, I. B.; Torres, M. Cruz; Da Graca, U. De Freitas Carneiro; De Miranda, J. M.; dos Reis, A. C.; Falcao, L. N.; Gomes, A.; Massafferri, A.; Machado, D. Torres] CBPF, Rio De Janeiro, Brazil  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001062420000002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5775  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva