toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Benitez, V. et al; Bernabeu, J.; Garcia, C.; Lacasta, C.; Marco, R.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U. doi  openurl
  Title Sensors for the End-cap prototype of the Inner Tracker in the ATLAS Detector Upgrade Type Journal Article
  Year 2016 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 833 Issue Pages 226-232  
  Keywords Silicon radiation detectors; Strip sensors; HL-LHC; ATLAS Upgrade; Inner Tracker (ITk); End-cap  
  Abstract The new silicon microstrip sensors of the End-cap part of the HL-LHC ATLAS Inner Tracker (ITk) present a number of challenges due to their complex design features such as the multiple different sensor shapes, the varying strip pitch, or the built-In stereo angle. In order to investigate these specific problems, the “petalet” prototype was defined as a small End-cap prototype. The sensors for the petalet prototype include several new layout and technological solutions to investigate the issues, they have been tested in detail by the collaboration. The sensor description and detailed test results are presented in this paper. New software tools have been developed for the automatic layout generation of the complex designs. The sensors have been fabricated, characterized and delivered to the institutes in the collaboration for their assembly on petalet prototypes. This paper describes the lessons learnt from the design and tests of the new solutions implemented on these sensors, which are being used for the full petal sensor development. This has resulted in the ITIc strip, community acquiring the necessary expertise to develop the full End-cap structure, the petal.  
  Address (up) [Benitez, V.; Ullan, M.; Quirion, D.; Pellegrini, G.; Fleta, C.; Lozano, M.] CSIC, CNM, IMB, Campus Univ Bellaterra, Barcelona 08193, Spain, Email: miguel.ullan@imb-cnm.csic.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000383818200032 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2816  
Permanent link to this record
 

 
Author T2K Collaboration (Abe, K. et al); Cervera-Villanueva, A.; Escudero, L.; Gomez-Cadenas, J.J.; Hansen, C.; Monfregola, L.; Sorel, M.; Stamoulis, P. url  doi
openurl 
  Title The T2K experiment Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 659 Issue 1 Pages 106-135  
  Keywords Neutrinos; Neutrino oscillation; Long baseline; T2K; J-PARC; Super-Kamiokande  
  Abstract The T2K experiment is a long baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle theta(13) by observing nu(e) appearance in a nu(mu) beam. It also aims to make a precision measurement of the known oscillation parameters, Delta m(23)(2) and sin(2)2 theta(23), via nu(mu) disappearance studies. Other goals of the experiment include various neutrino cross-section measurements and sterile neutrino searches. The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande) located 295 km away from J-PARC. This paper provides a comprehensive review of the instrumentation aspect of the T2K experiment and a summary of the vital information for each subsystem.  
  Address (up) [Beznosko, D.; Gilje, K.; Hignight, J.; Imber, J.; Jung, C. K.; Le, P. T.; Lopez, G. D.; Malafis, C. J.; McGrew, C.; Nagashima, G.; Nelson, B.; Paul, P.; Ramos, K.; Schmidt, J.; Steffens, J.; Tadepalli, A. S.; Taylor, I. J.; Toki, W.; Yanagisawa, C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA, Email: chang.jung@stonybrook.edu  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000297826100016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 832  
Permanent link to this record
 

 
Author Abgrall, N. et al; Cervera-Villanueva, A.; Escudero, L.; Monfregola, L.; Stamoulis, P. url  doi
openurl 
  Title Time projection chambers for the T2K near detectors Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 637 Issue 1 Pages 25-46  
  Keywords Time projection chamber; Drift chamber; Gas system; Micromegas; Neutrino oscillation  
  Abstract The T2K experiment is designed to study neutrino oscillation properties by directing a high intensity neutrino beam produced at J-PARC in Tokai, Japan, towards the large Super-Kamiokande detector located 295 km away, in Kamioka, Japan. The experiment includes a sophisticated near detector complex, 280 m downstream of the neutrino production target in order to measure the properties of the neutrino beam and to better understand neutrino interactions at the energy scale below a few GeV. A key element of the near detectors is the ND280 tracker, consisting of two active scintillator-bar target systems surrounded by three large time projection chambers (TPCs) for charged particle tracking. The data collected with the tracker are used to study charged current neutrino interaction rates and kinematics prior to oscillation, in order to reduce uncertainties in the oscillation measurements by the far detector. The tracker is surrounded by the former UA1/NOMAD dipole magnet and the TPCs measure the charges, momenta, and particle types of charged particles passing through them. Novel features of the TPC design include its rectangular box layout constructed from composite panels, the use of bulk micromegas detectors for gas amplification, electronics readout based on a new ASIC, and a photoelectron calibration system. This paper describes the design and construction of the TPCs, the micromegas modules, the readout electronics, the gas handling system, and shows the performance of the TPCs as deduced from measurements with particle beams, cosmic rays, and the calibration system.  
  Address (up) [Birney, P.; Bojechko, C.; Fransham, K.; Gaudin, A.; Karlen, D.; Langstaff, R.; Lenckowski, M.; Myslik, J.; Poffenberger, P.; Roney, M.; Tvaskis, V.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada, Email: karlen@uvic.ca  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000289608000004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 607  
Permanent link to this record
 

 
Author Blanco, A.; Belver, D.; Cabanelas, P.; Diaz, J.; Fonte, P.; Garzon, J.A.; Gil, A.; Gonzalez-Diaz, D.; Koenig, W.; Kolb, B.; Lopes, L.; Palka, M.; Pereira, A.; Traxler, M.; Zumbruch, P. doi  openurl
  Title RPC HADES-TOF wall cosmic ray test performance Type Journal Article
  Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 661 Issue Pages S114-S117  
  Keywords Gaseous detectors; Timing; TOF; RPC; HADES  
  Abstract In this work we present results concerning the cosmic ray test, prior to the final installation and commissioning of the new Resistive Plate Chamber (RPC) Time of Flight (TOF) wall for the High-Acceptance DiElectron Spectrometer (HADES) at GSI. The TOF wall is composed of six equal sectors, each one constituted by 186 individual 4-gaps glass-aluminium shielded RPC cells distributed in six columns and 31 rows in two partially overlapping layers, covering an area of 1.26 m(2). All sectors were tested with the final Front End Electronic (FEE) and Data AcQuisition system (DAQ) together with Low Voltage (LV) and High Voltage (HV) systems. Results confirm a very uniform average system time resolution of 77 ps sigma together with an average multi-hit time resolution of 83 ps. Crosstalk levels below 1% (in average), moderate timing tails along with an average longitudinal position resolution of 8.4 mm sigma are also confirmed.  
  Address (up) [Blanco, A.; Fonte, P.; Lopes, L.; Pereira, A.] LIP, Lab Instrumentacao & Fis Expt Particulas, Coimbra, Portugal, Email: alberto@coimbra.lip.pt  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000311568900029 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1285  
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abraham, J. et al); Pastor, S. url  doi
openurl 
  Title The fluorescence detector of the Pierre Auger Observatory Type Journal Article
  Year 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 620 Issue 2-3 Pages 227-251  
  Keywords Cosmic rays; Fluorescence detector  
  Abstract The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.  
  Address (up) [Bohacova, M.; Chudoba, J.; Grygar, J.; Hrabovsky, M.; Karova, T.; Mandat, D.; Necesal, P.; Nozka, L.; Nyklicek, M.; Palatka, M.; Pech, M.; Prouza, M.; Ridky, J.; Schovancova, J.; Schovanek, P.; Travnicek, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic, Email: prouza@fzu.cz  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000280601700018 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 400  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva