|   | 
Details
   web
Records
Author Masud, M.; Mehta, P.; Ternes, C.A.; Tortola, M.
Title Non-standard neutrino oscillations: perspective from unitarity triangles Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 171 - 19pp
Keywords Beyond Standard Model; CP violation; Neutrino Physics
Abstract We formulate an alternative approach based on unitarity triangles to describe neutrino oscillations in presence of non-standard interactions (NSI). Using perturbation theory, we derive the expression for the oscillation probability in case of NSI and cast it in terms of the three independent parameters of the leptonic unitarity triangle (LUT). The form invariance of the probability expression (even in presence of new physics scenario as long as the mixing matrix is unitary) facilitates a neat geometric view of neutrino oscillations in terms of LUT. We examine the regime of validity of perturbative expansions in the NSI case and make comparisons with approximate expressions existing in literature. We uncover some interesting dependencies on NSI terms while studying the evolution of LUT parameters and the Jarlskog invariant. Interestingly, the geometric approach based on LUT allows us to express the oscillation probabilities for a given pair of neutrino flavours in terms of only three (and not four) degrees of freedom which are related to the geometric properties (sides and angles) of the triangle. Moreover, the LUT parameters are invariant under rephasing transformations and independent of the parameterization adopted.
Address (down) [Masud, Mehedi] Inst Basic Sci IBS, Ctr Theoret Phys Universe, Daejeon 34126, South Korea, Email: masud@ibs.re.kr;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000658364000005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4864
Permanent link to this record
 

 
Author Marzocca, D.; Petcov, S.T.; Romanino, A.; Sevilla, M.C.
Title Nonzero |U_e3| from charged lepton corrections and the atmospheric neutrino mixing angle Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 073 - 27pp
Keywords Neutrino Physics; CP violation
Abstract After the successful determination of the reactor neutrino mixing angle theta(13) not equal 0.16 not equal 0, a new feature suggested by the current neutrino oscillation data is a sizeable deviation of the atmospheric neutrino mixing angle theta(23) from pi/4. Using the fact that the neutrino mixing matrix U = (UeU nu)-U-dagger, where U-e and U-nu result from the diagonalisation of the charged lepton and neutrino mass matrices, and assuming that U-nu has a i) bimaximal (BM), H) tri-bimaximal (TBM) form, or else Hi) corresponds to the conservation of the lepton charge L' = L-e – L μ- L-tau (LC), we investigate quantitatively what are the minimal forms of U-e, in terms of angles and phases it contains, that can provide the requisite corrections to U-nu so that theta(13), theta(23) and the solar neutrino mixing angle theta(12) have values compatible with the current data. Two possible orderings of the 12 and the 23 rotations in U-e, “standard” and “inverse”, are considered. The results we obtain depend strongly on the type of ordering. In the case of “standard” ordering, in particular, the Dirac CP violation phase delta, present in U, is predicted to have a value in a narrow interval around i) delta similar or equal to pi in the BM (or LC) case, H) delta congruent to 3 pi/2 or pi/2 in the TBM case, the CP conserving values delta = 0, pi, 2 pi being excluded in the TBM case at more than 4 sigma.
Address (down) [Marzocca, David; Petcov, S. T.; Romanino, Andrea] SISSA ISAS, I-34136 Trieste, Italy, Email: dmarzocc@sissa.it
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000321374400073 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1556
Permanent link to this record
 

 
Author Mangano, G.; Miele, G.; Pastor, S.; Pisanti, O.; Sarikas, S.
Title Constraining the cosmic radiation density due to lepton number with Big Bang Nucleosynthesis Type Journal Article
Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 035 - 18pp
Keywords big bang nucleosynthesis; neutrino properties; cosmological neutrinos; physics of the early universe
Abstract The cosmic energy density in the form of radiation before and during Big Bang Nucleosynthesis (BBN) is typically parameterized in terms of the effective number of neutrinos N-eff. This quantity, in case of no extra degrees of freedom, depends upon the chemical potential and the temperature characterizing the three active neutrino distributions, as well as by their possible non-thermal features. In the present analysis we determine the upper bounds that BBN places on N-eff from primordial neutrino-antineutrino asymmetries, with a careful treatment of the dynamics of neutrino oscillations. We consider quite a wide range for the total lepton number in the neutrino sector, eta(nu) = eta(nu e) + eta(nu mu) + eta(nu tau) and the initial electron neutrino asymmetry eta(in)(nu e), solving the corresponding kinetic equations which rule the dynamics of neutrino (antineutrino) distributions in phase space due to collisions, pair processes and flavor oscillations. New bounds on both the total lepton number in the neutrino sector and the nu(e)-(nu) over bar (e) asymmetry at the onset of BBN are obtained fully exploiting the time evolution of neutrino distributions, as well as the most recent determinations of primordial H-2/H density ratio and He-4 mass fraction. Note that taking the baryon fraction as measured by WMAP, the H-2/H abundance plays a relevant role in constraining the allowed regions in the eta(nu)-eta(in)(nu e) plane. These bounds fix the maximum contribution of neutrinos with primordial asymmetries to N-eff as a function of the mixing parameter theta(13), and point out the upper bound N-eff less than or similar to 3.4. Comparing these results with the forthcoming measurement of N-eff by the Planck satellite will likely provide insight on the nature of the radiation content of the universe.
Address (down) [Mangano, Gianpiero; Miele, Gennaro; Pisanti, Ofelia; Sarikas, Srdjan] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy, Email: mangano@na.infn.it
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000291258300035 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 642
Permanent link to this record
 

 
Author Mandal, S.; Srivastava, R.; Valle, J.W.F.
Title Electroweak symmetry breaking in the inverse seesaw mechanism Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 212 - 28pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract We investigate the stability of Higgs potential in inverse seesaw models. We derive the full two-loop RGEs of the relevant parameters, such as the quartic Higgs self-coupling, taking thresholds into account. We find that for relatively large Yukawa couplings the Higgs quartic self-coupling goes negative well below the Standard Model instability scale similar to 10(10) GeV. We show, however, that the “dynamical” inverse seesaw with spontaneous lepton number violation can lead to a completely consistent and stable Higgs vacuum up to the Planck scale.
Address (down) [Mandal, Sanjoy; Valle, Jose W. F.] Univ Valencia, Inst Fis Corpuscular, AHEP Grp, CSIC, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: smandal@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000634824700004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4780
Permanent link to this record
 

 
Author Mandal, S.; Romao, J.C.; Srivastava, R.; Valle, J.W.F.
Title Dynamical inverse seesaw mechanism as a simple benchmark for electroweak breaking and Higgs boson studies Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 029 - 38pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract The Standard Model (SM) vacuum is unstable for the measured values of the top Yukawa coupling and Higgs mass. Here we study the issue of vacuum stability when neutrino masses are generated through spontaneous low-scale lepton number violation. In the simplest dynamical inverse seesaw, the SM Higgs has two siblings: a massive CP-even scalar plus a massless Nambu-Goldstone boson, called majoron. For TeV scale breaking of lepton number, Higgs bosons can have a sizeable decay into the invisible majorons. We examine the interplay and complementarity of vacuum stability and perturbativity restrictions, with collider constraints on visible and invisible Higgs boson decay channels. This simple framework may help guiding further studies, for example, at the proposed FCC facility.
Address (down) [Mandal, Sanjoy; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedratico Jose Beltran 2, E-46980 Valencia, Spain, Email: smandal@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000672676400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4917
Permanent link to this record