|   | 
Details
   web
Records
Author Deppisch, F.F.; Harz, J.; Huang, W.C.; Hirsch, M.; Pas, H.
Title Falsifying high-scale baryogenesis with neutrinoless double beta decay and lepton flavor violation Type Journal Article
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 92 Issue 3 Pages 036005 - 6pp
Keywords
Abstract Interactions that manifest themselves as lepton number violating processes at low energies in combination with sphaleron transitions typically erase any preexisting baryon asymmetry of the Universe. In this article, we discuss the constraints obtained from an observation of neutrinoless double beta decay in this context. If a new physics mechanism of neutrinoless double beta decay other than the standard light neutrino exchange is observed, typical scenarios of high-scale baryogenesis will be excluded unless the baryon asymmetry is stabilized via some new mechanism. We also sketch how this conclusion can be extended beyond the first lepton generation by incorporating lepton flavor violating processes.
Address (down) [Deppisch, Frank F.; Harz, Julia; Huang, Wei-Chih] UCL, Dept Phys & Astron, London WC1E 6BT, England, Email: f.deppisch@ucl.ac.uk;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000359050900003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2318
Permanent link to this record
 

 
Author De Romeri, V.; Hirsch, M.
Title Sneutrino dark matter in low-scale seesaw scenarios Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 106 - 28pp
Keywords Supersymmetry Phenomenology
Abstract We consider supersymmetric models in which sneutrinos are viable dark matter candidates. These are either simple extensions of the Minimal Supersymmetric Standard Model with additional singlet superfields, such as the inverse or linear seesaw, or a model with an additional U(1) group. All of these models can accomodate the observed small neutrino masses and large mixings. We investigate the properties of sneutrinos as dark matter candidates in these scenarios. We check for phenomenological bounds, such as correct relic abundance, consistency with direct detection cross section limits and laboratory constraints, among others lepton flavour violating (LFV) charged lepton decays. While inverse and linear seesaw lead to different results for LFV, both models have very similar dark matter phenomenology, consistent with all experimental bounds. The extended gauge model shows some additional and peculiar features due to the presence of an extra gauge boson Z' and an additional light Higgs. Specifically, we point out that for sneutrino LSPs there is a strong constraint on the mass of the Z' due to the experimental bounds on the direct detection scattering cross section.
Address (down) [De Romeri, Valentina; Hirsch, Martin] Univ Valencia, Inst Fis Corpuscular, CSIC, AHEP Grp, E-46071 Valencia, Spain, Email: deromeri@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000313124000041 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1318
Permanent link to this record
 

 
Author De Romeri, V.; Hirsch, M.; Malinsky, M.
Title Soft masses in supersymmetric SO(10) GUTs with low intermediate scales Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 84 Issue 5 Pages 053012 - 15pp
Keywords
Abstract The specific shape of the squark, slepton and gaugino mass spectra, if measured with sufficient accuracy, can provide invaluable information not only about the dynamics underpinning their origin at some very high scale such as the unification scale M(G), but also about the intermediate scale physics encountered throughout their renormalization group equations evolution down to the energy scale accessible for the LHC. In this work, we study general features of the TeV scale soft supersymmetry breaking parameters stemming from a generic mSugra configuration within certain classes of supersymmetry SO(10) GUTs with different intermediate symmetries below M(G). We show that particular combinations of soft masses show characteristic deviations from the mSugra limit in different models and thus, potentially, allow to distinguish between these, even if the new intermediate scales are outside the energy range probed at accelerators. We also compare our results to those obtained for the three minimal seesaw models with mSugra boundary conditions and discuss the main differences between those and our SO(10) based models.
Address (down) [De Romeri, V; Hirsch, M; Malinsky, M] Univ Valencia, AHEP Grp, Inst Fis Corpuscular CSIC, E-46071 Valencia, Spain, Email: deromeri@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000295267700001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 777
Permanent link to this record
 

 
Author de Campos, F.; Eboli, O.J.P.; Hirsch, M.; Magro, M.B.; Porod, W.; Restrepo, D.; Valle, J.W.F.
Title Probing neutrino oscillations in supersymmetric models at the Large Hadron Collider Type Journal Article
Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 82 Issue 7 Pages 075002 - 8pp
Keywords
Abstract The lightest supersymmetric particle may decay with branching ratios that correlate with neutrino oscillation parameters. In this case the CERN Large Hadron Collider (LHC) has the potential to probe the atmospheric neutrino mixing angle with sensitivity competitive to its low-energy determination by underground experiments. Under realistic detection assumptions, we identify the necessary conditions for the experiments at CERN's LHC to probe the simplest scenario for neutrino masses induced by minimal supergravity with bilinear R parity violation.
Address (down) [de Campos, F.] Univ Estadual Paulista, Dept Quim & Fis, Guaratingueta, SP, Brazil, Email: camposc@feg.unesp.br
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000282570100004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 367
Permanent link to this record
 

 
Author Campos, F.; Eboli, O.J.P.; Magro, M.B.; Porod, W.; Restrepo, D.; Das, S.P.; Hirsch, M.; Valle, J.W.F.
Title Probing neutralino properties in minimal supergravity with bilinear R-parity violation Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 86 Issue 7 Pages 075001 - 8pp
Keywords
Abstract Supersymmetric models with bilinear R-parity violation can account for the observed neutrino masses and mixing parameters indicated by neutrino oscillation data. We consider minimal supergravity versions of bilinear R-parity violation where the lightest supersymmetric particle is a neutralino. This is unstable, with a large enough decay length to be detected at the CERN Large Hadron Collider. We analyze the Large Hadron Collider potential to determine the lightest supersymmetric particle properties, such as mass, lifetime and branching ratios, and discuss their relation to neutrino properties.
Address (down) [de Campos, F.] Univ Estadual Paulista, Dept Fis & Quim, BR-12516410 Sao Paulo, Brazil, Email: camposc@feg.unesp.br;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000309346800011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1167
Permanent link to this record