|   | 
Details
   web
Records
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Barrios-Marti, J.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Sanchez-Losa, A.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title Searches for clustering in the time integrated skymap of the ANTARES neutrino telescope Type Journal Article
Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 05 Issue 5 Pages 001 - 14pp
Keywords neutrino astronomy; neutrino detectors
Abstract This paper reports a search for spatial clustering of the arrival directions of high energy muon neutrinos detected by the ANTARES neutrino telescope. An improved two-point correlation method is used to study the autocorrelation of 3058 neutrino candidate events as well as cross-correlations with other classes of astrophysical objects: sources of high energy gamma rays, massive black holes and nearby galaxies. No significant deviations from the isotropic distribution of arrival directions expected from atmospheric backgrounds are observed.
Address (down) [Adrian-Martinez, S.; Ardid, M.; Bou-Cabo, M.; Felis, I.; Herrero, A.; Martinez-Mora, J. A.; Saldana, M.] Univ Politecn Valencia, Inst Invest Gestio Integrada Zones Costaneres IGI, Gandia 46730, Spain, Email: fabian.schussler@cea.fr
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000336092200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1797
Permanent link to this record
 

 
Author Double Chooz collaboration (Abe, Y. et al); Novella, P.
Title Characterization of the spontaneous light emission of the PMTs used in the Double Chooz experiment Type Journal Article
Year 2016 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 11 Issue Pages P08001 - 25pp
Keywords Detector design and construction technologies and materials; Neutrino detectors; Photoemission
Abstract During the commissioning of the first of the two detectors of the Double Chooz experiment, an unexpected and dominant background caused by the emission of light inside the optical volume has been observed. A specific study of the ensemble of phenomena called Light Noise has been carried out in-situ, and in an external laboratory, in order to characterize the signals and to identify the possible processes underlying the effect. Some mechanisms of instrumental noise originating from the PMTs were identified and it has been found that the leading one arises from the light emission localized on the photomultiplier base and produced by the combined effect of heat and high voltage across the transparent epoxy resin covering the electric components. The correlation of the rate and the amplitude of the signal with the temperature has been observed. For the first detector in operation the induced background has been mitigated using online and offline analysis selections based on timing and light pattern of the signals, while a modification of the photomultiplier assembly has been implemented for the second detector in order to blacken the PMT bases.
Address (down) [Abrahao, T.; Nunokawa, H.; Wagner, S.] PUC Univ, R Marques de Sao Vicente,225 Gavea, Rio De Janeiro, RJ, Brazil, Email: roberto.santorelli@ciemat.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000387860100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2869
Permanent link to this record
 

 
Author Double Chooz collaboration (Abrahao, T. et al); Novella, P.
Title Novel event classification based on spectral analysis of scintillation waveforms in Double Chooz Type Journal Article
Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 13 Issue Pages P01031 - 26pp
Keywords Digital signal processing (DSP); Particle identification methods; Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators); Neutrino detectors
Abstract Liquid scintillators are a common choice for neutrino physics experiments, but their capabilities to perform background rejection by scintillation pulse shape discrimination is generally limited in large detectors. This paper describes a novel approach for a pulse shape based event classification developed in the context of the Double Chooz reactor antineutrino experiment. Unlike previous implementations, this method uses the Fourier power spectra of the scintillation pulse shapes to obtain event-wise information. A classification variable built from spectral information was able to achieve an unprecedented performance, despite the lack of optimization at the detector design level. Several examples of event classification are provided, ranging from differentiation between the detector volumes and an efficient rejection of instrumental light noise, to some sensitivity to the particle type, such as stopping muons, ortho-positronium formation, alpha particles as well as electrons and positrons. In combination with other techniques the method is expected to allow for a versatile and more efficient background rejection in the future, especially if detector optimization is taken into account at the design level.
Address (down) [Abrahao, T.; dos Anjos, J. C.; Lima, H.; Pepe, I.; Wagner, S.] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil, Email: stefan.wagner@apc.in2p3.fr
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000423783800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3466
Permanent link to this record
 

 
Author Double Chooz collaboration (Abrahao, T. et al); Novella, P.
Title Cosmic-muon characterization and annual modulation measurement with Double Chooz detectors Type Journal Article
Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 02 Issue 2 Pages 017 - 20pp
Keywords cosmic ray experiments; neutrino detectors
Abstract A study on cosmic muons has been performed for the two identical near and far neutrino detectors of the Double Chooz experiment, placed at similar to 120 and similar to 300 m. w.e. underground respectively, including the corresponding simulations using the MUSIC simulation package. This characterization has allowed us to measure the muon flux reaching both detectors to be (3.64 +/- 0.04) x 10(-4) cm(-2) s(-1) for the near detector and (7.00 +/- 0.05) x 10(-5) cm(-2) s(-1) for the far one. The seasonal modulation of the signal has also been studied observing a positive correlation with the atmospheric temperature, leading to an effective temperature coefficient of alpha(T) = 0.212 +/- 0.024 and 0.355 +/- 0.019 for the near and far detectors respectively. These measurements, in good agreement with expectations based on theoretical models, represent one of the first measurements of this coefficient in shallow depth installations.
Address (down) [Abrahao, T.; Bekman, I.; Cerrada, M.; Corpace, O.; Jochum, J.; LoSecco, J. M.; Maricic, J.; Nagasaka, Y.; Veyssiere, C.; Yermia, F.] Ctr Brasileiro Pesquisas Fisicas, BR-22290180 Rio De Janeiro, RJ, Brazil, Email: hgomez@apc.univ-paris7.fr
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000399455000017 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3110
Permanent link to this record
 

 
Author Super-Kamiokande Collaboration (Abe, K. et al); Molina Sedgwick, S.
Title Neutron tagging following atmospheric neutrino events in a water Cherenkov detector Type Journal Article
Year 2022 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 17 Issue 10 Pages P10029 - 41pp
Keywords Particle identification methods; Cherenkov detectors; Neutrino detectors; Large detector systems for particle and astroparticle physics
Abstract We present the development of neutron-tagging techniques in Super-Kamiokande IV using a neural network analysis. The detection efficiency of neutron capture on hydrogen is estimated to be 26%, with a mis-tag rate of 0.016 per neutrino event. The uncertainty of the tagging efficiency is estimated to be 9.0%. Measurement of the tagging efficiency with data from an Americium-Beryllium calibration agrees with this value within 10%. The tagging procedure was performed on 3,244.4 days of SK-IV atmospheric neutrino data, identifying 18,091 neutrons in 26,473 neutrino events. The fitted neutron capture lifetime was measured as 218 +/- 9 μs.
Address (down) [Abe, K.; Haga, Y.; Hayato, Y.; Hiraide, K.; Ieki, K.; Ikeda, M.; Imaizumi, S.; Iyogi, K.; Kameda, J.; Kanemura, Y.; Kataoka, Y.; Kato, Y.; Kishimoto, Y.; Miki, S.; Mine, S.; Miura, M.; Mochizuki, T.; Moriyama, S.; Nagao, Y.; Nakahata, M.; Nakajima, T.; Nakano, Y.; Nakayama, S.; Okada, T.; Okamoto, K.; Orii, A.; Sato, K.; Sekiya, H.; Shiozawa, M.; Sonoda, Y.; Suzuki, Y.; Takeda, A.; Takemoto, Y.; Takenaka, A.; Tanaka, H.; Tasaka, S.; Tomura, T.; Ueno, K.; Watanabe, S.; Yano, T.; Yokozawa, T.] Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Gifu, Akita 5061205, Japan, Email: hayato@icrr.u-tokyo.ac.jp
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000898723700008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5441
Permanent link to this record