n_TOF Collaboration(Stamatopoulos, A. et al), Domingo-Pardo, C., Tain, J. L., & Tarifeño-Saldivia, A. (2020). Investigation of the Pu-240(n, f) reaction at the n_TOF/EAR2 facility in the 9 meV-6 MeV range. Phys. Rev. C, 102(1), 014616–23pp.
Abstract: Background: Nuclear waste management is considered amongst the major challenges in the field of nuclear energy. A possible means of addressing this issue is waste transmutation in advanced nuclear systems, whose operation requires a fast neutron spectrum. In this regard, the accurate knowledge of neutron-induced reaction cross sections of several (minor) actinide isotopes is essential for design optimization and improvement of safety margins of such systems. One such case is Pu-240, due to its accumulation in spent nuclear fuel of thermal reactors and its usage in fast reactor fuel. The measurement of the Pu-240(n, f) cross section was previously attempted at the CERN nTOF facility EAR1 measuring station using the time-of-flight technique. Due to the low amount of available material and the given flux at EAR1, the measurement had to last several months to achieve a sufficient statistical accuracy. This long duration led to detector deterioration due to the prolonged exposure to the high alpha activity of the fission foils, therefore the measurement could not be successfully completed. Purpose: It is aimed to determine whether it is feasible to study neutron-induced fission at nTOF/EAR2 and provide data on the Pu-240(n, f) reaction in energy regions requested for applications. Methods: The study of the Pu-240(n, f) reaction was made at a new experimental area (EAR2) with a shorter flight path which delivered on average 30 times higher flux at fast neutron energies. This enabled the measurement to be performed much faster, thus limiting the exposure of the detectors to the intrinsic activity of the fission foils. The experimental setup was based on microbulk Micromegas detectors and the time-of-flight data were analyzed with an optimized pulse-shape analysis algorithm. Special attention was dedicated to the estimation of the non-negligible counting loss corrections with the development of a new methodology, and other corrections were estimated via Monte Carlo simulations of the experimental setup. Results: This new measurement of the Pu-240(n, f) cross section yielded data from 9 meV up to 6 MeV incident neutron energy and fission resonance kernels were extracted up to 10 keV. Conclusions: Neutron-induced fission of high activity samples can be successfully studied at the n_TOF/EAR2 facility at CERN covering a wide range of neutron energies, from thermal to a few MeV.
|
n_TOF Collaboration(Sosnin, N. V. et al), Babiano-Suarez, V., Caballero-Ontanaya, L., Domingo-Pardo, C., Ladarescu, I., & Tain, J. L. (2024). Measurement of the 78Se(n, γ)79Se cross section up to 600 keV at the n_TOF facility at CERN. Phys. Rev. C, 110(6), 065805–12pp.
Abstract: The Se-78(n, gamma)Se-79 cross section has a high impact on the abundances of Se-78 produced during the slow neutron capture process (s process) in massive stars. A measurement of the Se-78 radiative neutron capture cross section has been performed at the Neutron Time-of-Flight facility at CERN using a set of liquid scintillation detectors that have been optimized for a low sensitivity to neutrons. We present resonance capture kernels up to 70 keV and cross section from 70 to 600 keV. Maxwellian-averaged cross section (MACS) values were calculated for stellar temperatures between kT = 5 and 100 keV, with uncertainties between 4.6% and 5.8%. The new MACS values result in substantial decreases of 20-30% of Se-78 abundances produced in the s process in massive stars and AGB stars. Massive stars are now predicted to produce subsolar Se-78/Se-76 ratios, which is expected since Se-76 is an s-only isotope, while solar Se-78 abundances have also contributions from other nucleosynthesis processes.
|
n_TOF Collaboration(Sarmento, R. et al), Domingo-Pardo, C., & Tain, J. L. (2011). Measurement of the (236)U(n, f) cross section from 170 meV to 2 MeV at the CERN n_TOF facility. Phys. Rev. C, 84(4), 044618–10pp.
Abstract: The neutron-induced fission cross section of (236)U was measured at the neutron Time-of-Flight (nTOF) facility at CERN relative to the standard (235)U(n, f) cross section for neutron energies ranging from above thermal to several MeV. The measurement, covering the full range simultaneously, was performed with a fast ionization chamber, taking advantage of the high resolution of the nTOF spectrometer. The n_TOF results confirm that the first resonance at 5.45 eV is largely overestimated in some nuclear data libraries. The resonance triplet around 1.2 keV was measured with high resolution and resonance parameters were determined with good accuracy. Resonances at high energy have also been observed and characterized and different values for the cross section are provided for the region between 10 keV and the fission threshold. The present work indicates various shortcomings of the current nuclear data libraries in the subthreshold region and provides the basis for an accurate re-evaluation of the (236)U(n, f) cross section, which is of great relevance for the development of emerging or innovative nuclear reactor technologies.
|
n_TOF Collaboration(Sabate-Gilarte et al.), Domingo-Pardo, C., Tain, J. L., & Tarifeño-Saldivia, A. (2017). High-accuracy determination of the neutron flux in the new experimental area n_TOF-EAR2 at CERNx. Eur. Phys. J. A, 53(10), 210–13pp.
Abstract: A new high flux experimental area has recently become operational at the nTOF facility at CERN. This new measuring station, nTOF-EAR2, is placed at the end of a vertical beam line at a distance of approximately 20m from the spallation target. The characterization of the neutron beam, in terms of flux, spatial profile and resolution function, is of crucial importance for the feasibility study and data analysis of all measurements to be performed in the new area. In this paper, the measurement of the neutron flux, performed with different solid-state and gaseous detection systems, and using three neutronconverting reactions considered standard in different energy regions is reported. The results of the various measurements have been combined, yielding an evaluated neutron energy distribution in a wide energy range, from 2meV to 100MeV, with an accuracy ranging from 2%, at low energy, to 6% in the high-energy region. In addition, an absolute normalization of the n_TOF-EAR2 neutron flux has been obtained by means of an activation measurement performed with 197 Au foils in the beam.
|
Rubio, B., Gelletly, W., Algora, A., Nacher, E., & Tain, J. L. (2017). Beta decay studies with total absorption spectroscopy and the Lucrecia spectrometer at ISOLDE. J. Phys. G, 44(8), 084004–25pp.
Abstract: Here we present the experimental activities carried out at ISOLDE with the total absorption spectrometer Lucrecia, a large 4 pi scintillator detector designed to absorb a full gamma cascade following beta decay. This spectrometer is designed to measure beta-feeding to excited states without the systematic error called Pandemonium. The set up allows the measurement of decays of very short half life. Experimental results from several campaigns, that focus on the determination of the shapes of beta-decaying nuclei by measuring their beta decay strength distributions as a function of excitation energy in the daughter nucleus, are presented.
|