|   | 
Details
   web
Records
Author Vijande, J.; Valcarce, A.; Garcilazo, H.
Title Heavy-baryon quark model picture from lattice QCD Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 90 Issue 9 Pages 094004 - 6pp
Keywords
Abstract The ground state and excited spectra of baryons containing three identical heavy quarks, b or c, have been recently calculated in nonperturbative lattice QCD. The energy of positive and negative parity excitations has been determined with high precision. Lattice results constitute a unique opportunity to learn about the quark-confinement mechanism as well as elucidating our knowledge about the nature of the strong force. We analyze the nonperturbative lattice QCD results by means of heavy-quark static potentials derived using SU(3) lattice QCD. We make use of different numerical techniques for the three-body problem.
Address (down) [Vijande, J.] Univ Valencia, Dept Fis Atom Mol & Nucl, E-46100 Burjassot, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000344917200004 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2013
Permanent link to this record
 

 
Author Vijande, J.; Valcarce, A.; Garcilazo, H.
Title Constituent-quark model description of triply heavy baryon nonperturbative lattice QCD data Type Journal Article
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 91 Issue 5 Pages 054011 - 7pp
Keywords
Abstract This paper provides results for the spectra of triply charmed and bottom baryons based on a constituent-quark model approach. We take advantage of the assumption that potential models are expected to describe triply heavy baryons to a similar degree of accuracy as the successful results obtained in the charmonium and bottomonium sectors. The high precision calculation of the ground state and positive and negative parity excited states recently reported by nonperturbative lattice QCD provides us with a unique opportunity to confront model predictions with the data. This comparison may also help to build a bridge between two difficult to reconcile lattice QCD results, namely, the lattice SU(3) QCD static three-quark potential and the recent results of nonperturbative lattice QCD for the triply heavy baryon spectra.
Address (down) [Vijande, J.] Univ Valencia, Dept Fis Atom Mol & Nucl, E-46100 Burjassot, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000352025200005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2184
Permanent link to this record
 

 
Author Vatsyayan, D.; Goswami, S.
Title Lowering the scale of fermion triplet leptogenesis with two Higgs doublets Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 107 Issue 3 Pages 035014 - 9pp
Keywords
Abstract In this paper, we consider the possibility of generating the observed baryon asymmetry of the Universe via leptogenesis in the context of a triplet fermion-mediated type-III seesaw model of neutrino mass. With a hierarchical spectrum of the additional fermions, the lower bound on the lightest triplet mass is similar to 1010 GeV for successful leptogenesis, a couple of orders higher than that of the type-I case. We investigate the possibility of lowering this bound in the framework of two-Higgs-doublet models. We find that the bounds can be lowered down to 107 GeV for a hierarchical spectrum. If we include the flavor effects, then a further lowering by one order of magnitude is possible. We also discuss if such lowering can be compatible with the naturalness bounds on the triplet mass.
Address (down) [Vatsyayan, Drona] Univ Valencia, Dept Fis Teor, C-Catedrat Jose Beltran, 2, E-46980 Paterna, Spain, Email: drona.vatsyayan@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000982166600007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5544
Permanent link to this record
 

 
Author de Medeiros Varzielas, I.; Neder, T.; Zhou, Y.L.
Title Effective alignments as building blocks of flavor models Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 97 Issue 11 Pages 115033 - 21pp
Keywords
Abstract Flavor models typically rely on flavons-scalars that break the family symmetry by acquiring vacuum expectation values in specific directions. We develop the idea of effective alignments, i.e., cases where the contractions of multiple flavons give rise to directions that are hard or impossible to obtain directly by breaking the family symmetry. Focusing on the example where the symmetry is S-4, we list the effective alignments that can be obtained from flavons vacuum expectation values that arise naturally from S-4. Using those effective alignments as building blocks, it is possible to construct flavor models, for example by using the effective alignments in constrained sequential dominance models. We illustrate how to obtain several of the mixing schemes in the literature, and explicitly construct renormalizable models for three viable cases, two of which lead to trimaximal mixing scenarios.
Address (down) [Varzielas, Ivo de Medeiros] Univ Lisbon, Inst Super Tecn, Dept Fis, CFTP, Ave Rovisco Pais 1, P-1049 Lisbon, Portugal, Email: ivo.de@udo.edu;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000435641000007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3628
Permanent link to this record
 

 
Author van Beekveld, M.; Beenakker, W.; Caron, S.; Peeters, R.; Ruiz de Austri, R.
Title Supersymmetry with dark matter is still natural Type Journal Article
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 96 Issue 3 Pages 035015 - 7pp
Keywords
Abstract We identify the parameter regions of the phenomenological minimal supersymmetric standard model (pMSSM) with the minimal possible fine-tuning. We show that the fine-tuning of the pMSSM is not large, nor under pressure by LHC searches. Low sbottom, stop and gluino masses turn out to be less relevant for low fine-tuning than commonly assumed. We show a link between low fine-tuning and the dark matter relic density. Fine-tuning arguments point to models with a dark matter candidate yielding the correct dark matter relic density: a bino-higgsino particle with a mass of 35-155 GeV. Some of these candidates are compatible with recent hints seen in astrophysics experiments such as Fermi-LAT and AMS-02. We argue that upcoming direct search experiments, such as XENON1T, will test all of the most natural solutions in the next few years due to the sensitivity of these experiments on the spin-dependent WIMP-nucleon cross section.
Address (down) [van Beekveld, Melissa; Beenakker, Wim; Caron, Sascha] Radboud Univ Nijmegen, Fac Sci, Inst Math Astrophys & Particle Phys, Mailbox 79,POB 9010, NL-6500 GL Nijmegen, Netherlands, Email: mcbeekveld@gmail.com;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000407779600004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3246
Permanent link to this record