|   | 
Details
   web
Records
Author Melcon, A.A.; Cuendis, S.A.; Cogollos, C.; Diaz-Morcillo, A.; Dobrich, B.; Gallego, J.D.; Barcelo, J.M.G.; Gimeno, B.; Golm, J.; Irastorza, I.G.; Lozano-Guerrero, A.J.; Malbrunot, C.; Millar, A.; Navarro, P.; Garay, C.P.; Redondo, J.; Wuensch, W.
Title Scalable haloscopes for axion dark matter detection in the 30 μeV range with RADES Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 084 - 28pp
Keywords Dark matter; Dark Matter and Double Beta Decay (experiments)
Abstract RADES (Relic Axion Detector Exploratory Setup) is a project with the goal of directly searching for axion dark matter above the 30 μeV scale employing custom-made microwave filters in magnetic dipole fields. Currently RADES is taking data at the LHC dipole of the CAST experiment. In the long term, the RADES cavities are envisioned to take data in the BabyIAXO magnet. In this article we report on the modelling, building and characterisation of an optimised microwave-filter design with alternating irises that exploits maximal coupling to axions while being scalable in length without suffering from mode-mixing. We develop the mathematical formalism and theoretical study which justifies the performance of the chosen design. We also point towards the applicability of this formalism to optimise the MADMAX dielectric haloscopes.
Address (up) [Alvarez Melcon, A.; Diaz-Morcillo, A.; Garcia Barcelo, J. M.; Lozano-Guerrero, A. J.; Navarro, P.] Tech Univ Cartagena, Dept Informat & Commun Technol, Murcia 30203, Spain, Email: alejandro.alvarez@upct.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000553158400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4478
Permanent link to this record
 

 
Author Alvarez Melcon, A. et al; Gimeno, B.
Title First results of the CAST-RADES haloscope search for axions at 34.67 μeV Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 075 - 16pp
Keywords Dark matter; Dark Matter and Double Beta Decay (experiments); Exotics
Abstract We present results of the Relic Axion Dark-Matter Exploratory Setup (RADES), a detector which is part of the CERN Axion Solar Telescope (CAST), searching for axion dark matter in the 34.67 μeV mass range. A radio frequency cavity consisting of 5 sub-cavities coupled by inductive irises took physics data inside the CAST dipole magnet for the first time using this filter-like haloscope geometry. An exclusion limit with a 95% credibility level on the axion-photon coupling constant of g(a gamma) greater than or similar to 4 x 10(-13) GeV-1 over a mass range of 34.6738 μeV < m(a)< 34.6771 μeV is set. This constitutes a significant improvement over the current strongest limit set by CAST at this mass and is at the same time one of the most sensitive direct searches for an axion dark matter candidate above the mass of 25 μeV. The results also demonstrate the feasibility of exploring a wider mass range around the value probed by CAST-RADES in this work using similar coherent resonant cavities.
Address (up) [Alvarez Melcon, A.; Diaz-Morcillo, A.; Garcia Barcelo, J. M.; Lozano-Guerrero, A. J.; Navarro, P.] Tech Univ Cartagena, Dept Informat & Commun Technol, Murcia 30203, Spain, Email: sergio.arguedas.cuendis@cern.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000705229500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4993
Permanent link to this record
 

 
Author NEXT Collaboration (Alvarez, V. et al); Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J.J.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Muñoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.
Title Near-intrinsic energy resolution for 30-662 keV gamma rays in a high pressure xenon electroluminescent TPC Type Journal Article
Year 2013 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 708 Issue Pages 101-114
Keywords Xenon; Energy resolution; High-pressure; TPC; Electroluminescence; Neutrinoless double beta decay
Abstract We present the design, data and results from the NEXT prototype for Double Beta and Dark Matter (NEXT-DBDM) detector, a high-pressure gaseous natural xenon electroluminescent time projection chamber (TPC) that was built at the Lawrence Berkeley National Laboratory. It is a prototype of the planned NEXT-100 Xe-136 neutrino-less double beta decay (0 nu beta beta) experiment with the main objectives of demonstrating near-intrinsic energy resolution at energies up to 662 keV and of optimizing the NEXT-100 detector design and operating parameters. Energy resolutions of similar to 1% FWHM for 662 keV gamma rays were obtained at 10 and 15 atm and similar to 5% FWHM for 30 keV fluorescence xenon X-rays. These results demonstrate that 0.5% FWHM resolutions for the 2459 keV hypothetical neutrino-less double beta decay peak are realizable. This energy resolution is a factor 7-20 better than that of the current leading 0 nu beta beta experiments using liquid xenon and thus represents a significant advancement. We present also first results from a track imaging system consisting of 64 silicon photo-multipliers recently installed in NEXT-DBDM that, along with the excellent energy resolution, demonstrates the key functionalities required for the NEXT-100 0 nu beta beta search.
Address (up) [Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J. J.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Munoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: agoldschmidt@lbl.gov
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000316192300015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1369
Permanent link to this record
 

 
Author Alvarez, V.; Herrero-Bosch, V.; Esteve, R.; Laing, A.; Rodriguez, J.; Querol, M.; Monrabal, F.; Toledo, J.F.; Gomez-Cadenas, J.J.
Title The electronics of the energy plane of the NEXT-White detector Type Journal Article
Year 2019 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 917 Issue Pages 68-76
Keywords Calorimetry; Front-end electronics; Digital baseline restoration
Abstract This paper describes the electronics of NEXT-White (NEW) detector PMT plane, a high pressure xenon TPC with electroluminescent amplification (HPXe-EL) currently operating at the Laboratorio Subterraneo de Canfranc (LSC) in Huesca, Spain. In NEXT-White the energy of the event is measured by a plane of photomultipliers (PMTs) located behind a transparent cathode. The PMTs are Hamamatsu R11410-10 chosen due to their low radioactivity. The electronics have been designed and implemented to fulfill strict requirements: an overall energy resolution below 1% and a radiopurity budget of 20 mBq unit(-1) in the chain of Bi-214. All the components and materials have been carefully screened to assure a low radioactivity level and at the same time meet the required front-end electronics specifications. In order to reduce low frequency noise effects and enhance detector safety a grounded cathode connection has been used for the PMTs. This implies an AC-coupled readout and baseline variations in the PMT signals. A detailed description of the electronics and a novel approach based on a digital baseline restoration to obtain a linear response and handle AC coupling effects is presented. The final PMT channel design has been characterized with linearity better than 0.4% and noise below 0.4 mV.
Address (up) [Alvarez, V; Laing, A.; Rodriguez, J.; Querol, M.; Gomez-Cadenas, J. J.] CSIC, IFIC, Inst Fis Corpuscular, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: vicente.alvarez@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000455016500010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3868
Permanent link to this record
 

 
Author Alvarez-Ruso, L.; Hayato, Y.; Nieves, J.
Title Progress and open questions in the physics of neutrino cross sections at intermediate energies Type Journal Article
Year 2014 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume 16 Issue Pages 075015 - 62pp
Keywords neutrino cross sections; oscillation experiments; electroweak hadronic form factors; nuclear effects
Abstract New and more precise measurements of neutrino cross sections have renewed interest in a better understanding of electroweak interactions on nucleons and nuclei. This effort is crucial to achieving the precision goals of the neutrino oscillation program, making new discoveries, like the CP violation in the leptonic sector, possible. We review the recent progress in the physics of neutrino cross sections, putting emphasis on the open questions that arise in the comparison with new experimental data. Following an overview of recent neutrino experiments and future plans, we present some details about the theoretical development in the description of (anti) neutrino-induced quasielastic (QE) scattering and the role of multi-nucleon QE-like mechanisms. We cover not only pion production in nucleons and nuclei but also other inelastic channels including strangeness production and photon emission. Coherent reaction channels on nuclear targets are also discussed. Finally, we briefly describe some of the Monte Carlo event generators, which are at the core of all neutrino oscillation and cross-section measurements.
Address (up) [Alvarez-Ruso, L.; Nieves, J.] Univ Valencia, Ctr Mixto CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: luis.alvarez@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes WOS:000341829000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1927
Permanent link to this record
 

 
Author Alvarez-Ruso, L. et al; Nieves, J.
Title NuSTEC White Paper: Status and challenges of neutrino-nucleus scattering Type Journal Article
Year 2018 Publication Progress in Particle and Nuclear Physics Abbreviated Journal Prog. Part. Nucl. Phys.
Volume 100 Issue Pages 1-68
Keywords Neutrino; Nucleus; Scattering; Nuclear; Model; Oscillations
Abstract The precise measurement of neutrino properties is among the highest priorities in fundamental particle physics, involving many experiments worldwide. Since the experiments rely on the interactions of neutrinos with bound nucleons inside atomic nuclei, the planned advances in the scope and precision of these experiments require a commensurate effort in the understanding and modeling of the hadronic and nuclear physics of these interactions, which is incorporated as a nuclear model in neutrino event generators. This model is essential to every phase of experimental analyses and its theoretical uncertainties play an important role in interpreting every result. In this White Paper we discuss in detail the impact of neutrino-nucleus interactions, especially the nuclear effects, on the measurement of neutrino properties using the determination of oscillation parameters as a central example. After an Executive Summary and a concise Overview of the issues, we explain how the neutrino event generators work, what can be learned from electron-nucleus interactions and how each underlying physics process – from quasi-elastic to deep inelastic scattering – is understood today. We then emphasize how our understanding must improve to meet the demands of future experiments. With every topic we find that the challenges can be met only with the active support and collaboration among specialists in strong interactions and electroweak physics that include theorists and experimentalists from both the nuclear and high energy physics communities.
Address (up) [Alvarez-Ruso, L.; Nieves, J.] Univ Valencia, Ctr Mixto CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: morfin@fnal.gov
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0146-6410 ISBN Medium
Area Expedition Conference
Notes WOS:000430618800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3569
Permanent link to this record
 

 
Author Alves, A.; Arcadi, G.; Dong, P.V.; Duarte, L.; Queiroz, F.S.; Valle, J.W.F.
Title Matter-parity as a residual gauge symmetry: Probing a theory of cosmological dark matter Type Journal Article
Year 2017 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 772 Issue Pages 825-831
Keywords
Abstract We discuss a non-supersymmetric scenario which addresses the origin of the matter-parity symmetry, P-M = (-1)(3(B-L)+2s), leading to a viable Dirac fermion dark matter candidate. Implications to electroweak precision, muon anomalous magnetic moment, flavor changing interactions, lepton flavor violation, dark matter and collider physics are discussed in detail. We show that this non-supersymmetric model is capable of generating the matter-parity symmetry in agreement with existing data with gripping implications to particle physics and cosmology.
Address (up) [Alves, Alexandre] Univ Fed Sao Paulo, Dept Fis, BR-09972270 Diadema, SP, Brazil, Email: queiroz@mpi-hd.mpg.de
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000411369700116 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3332
Permanent link to this record
 

 
Author Amaldi, U.; Bonomi, R.; Braccini, S.; Crescenti, M.; Degiovanni, A.; Garlasche, M.; Garonna, A.; Magrin, G.; Mellace, C.; Pearce, P.; Pitta, G.; Puggioni, P.; Rosso, E.; Verdu-Andres, S.; Wegner, R.; Weiss, M.; Zennaro, R.
Title Accelerators for hadrontherapy: From Lawrence cyclotrons to linacs Type Journal Article
Year 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 620 Issue 2-3 Pages 563-577
Keywords Medical accelerators; Linac; Cyclotron; Synchrotron; Cyclinac; Radiation oncology; Hadrontherapy; Particle therapy; Proton therapy; Carbon ion therapy; Dose delivery
Abstract Hadrontherapy with protons and carbon ions is a fast developing methodology in radiation oncology. The accelerators used and planned for this purpose are reviewed starting from the cyclotrons used in the thirties. As discussed in the first part of this paper, normal and superconducting cyclotrons are still employed, together with synchrotrons, for proton therapy while for carbon ion therapy synchrotrons have been till now the only option. The latest developments concern a superconducting cyclotron for carbon ion therapy, fast-cycling high frequency linacs and 'single room' proton therapy facilities. These issues are discussed in the second part of the paper by underlining the present challenges, in particular the treatment of moving organs.
Address (up) [Amaldi, U.; Bonomi, R.; Braccini, S.; Crescenti, M.; Degiovanni, A.; Garlasche, M.; Garonna, A.; Magrin, G.; Mellace, C.; Pearce, P.; Pitta, G.; Puggioni, P.; Rosso, E.; Andres, S. Verdu; Wegner, R.; Weiss, M.; Zennaro, R.] TERA Fdn, Novara, Italy, Email: Saverio.Braccini@cern.ch
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes ISI:000280601700058 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 401
Permanent link to this record
 

 
Author Amarilo, K.M.; Ferreira Filho, M.B.; Araujo Filho, A.A.; Reis, J.A.A.S.
Title Gravitational waves effects in a Lorentz-violating scenario Type Journal Article
Year 2024 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 855 Issue Pages 138785 - 7pp
Keywords Gravitational waves; Lorentz symmetry breaking; Polarization states; Quadrupole term
Abstract This paper focuses on how the production and polarization of gravitational waves are affected by spontaneous Lorentz symmetry breaking, which is driven by a self-interacting vector field. Specifically, we examine the impact of a smooth quadratic potential and a non-minimal coupling, discussing the constraints and causality features of the linearized Einstein equation. To analyze the polarization states of a plane wave, we consider a fixed vacuum expectation value (VEV) of the vector field. Remarkably, we verify that a space-like background vector field modifies the polarization plane and introduces a longitudinal degree of freedom. In order to investigate the Lorentz violation effect on the quadrupole formula, we use the modified Green function. Finally, we show that the space-like component of the background field leads to a third-order time derivative of the quadrupole moment, and the bounds for the Lorentz-breaking coefficients are estimated as well.
Address (up) [Amarilo, K. M.; Ferreira Filho, M. B.] Univ Estado Rio de Janeiro, Dep Fis Nucl & Altas Energias, Inst Fis, Rua Sao Francisco Xavier 524, BR-20559900 Rio De Janeiro, RJ, Brazil, Email: kevin.amarilo@cern.ch;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:001257664300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6168
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Martinez-Vidal, F.; Oyanguren, A.; Ruiz Valls, P.; Sanchez Mayordomo, C.
Title Observation of B-s(0) -> K* (+/-) K -/+ and evidence for B-s(0) -> K*(-) pi(+) decays Type Journal Article
Year 2014 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume 16 Issue Pages 123001 - 18pp
Keywords flavour physics; B physics; branching fraction
Abstract Measurements of the branching fractions of B-s(0) -> K*K-+/-(-/+) and B-s(0) -> K*(+/-) pi(-/+) decays are performed using a data sample corresponding to 1.0 fb(-1) of protonproton collision data collected with the LHCb detector at a centre-of- mass energy of 7 TeV, where the K*(+/-) mesons are reconstructed in the K-s(0) pi(+/-) final state. The first observation of the B-s(0) -> K*(+/-) K--/+ decay and the first evidence for the B-s(0) -> K*(-) pi(+) decay are reported with branching fractions B(B-s(0) -> K*K-+/-(-/+)) = (12.7 +/- 1.9 +/- 1.9) x 10(-6) , B(B-s(0) -> K*(-) pi(+)) = (3.3 +/- 1.1 +/- 0.5) x 10(-6) , where the first uncertainties are statistical and the second are systematic. In addition, an upper limit of B(B-0 -> K*K-+/-(-/+)) < 0.4 (0.5) x 10(-6) is set at 90% (95%) confidence level.
Address (up) [Amato, S.; Akiba, K. Carvalho; De Paula, L.; Francisco, O.; Gandelman, M.; Lopes, J. H.; Tostes, D. Martins; Otalora Goicochea, J. M.; Polycarpo, E.; Rangel, M. S.; Guimaraes, V. Salustino; De Paula, B. Souza; Szilard, D.; Vieira, D.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes WOS:000346821400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2064
Permanent link to this record