|   | 
Details
   web
Records
Author Folgado, M.G.; Donini, A.; Rius, N.
Title Gravity-mediated scalar Dark Matter in warped extra-dimensions Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 161 - 39pp
Keywords Phenomenology of Field Theories in Higher Dimensions
Abstract We revisit the case of scalar Dark Matter interacting just gravitationally with the Standard Model (SM) particles in an extra-dimensional Randall-Sundrum scenario. We assume that both, the Dark Matter and the Standard Model, are localized in the TeV brane and only interact via gravitational mediators, namely the graviton Kaluza-Klein modes and the radion. We analyze in detail the dark matter annihilation channel into two on-shell KK-gravitons, and contrary to previous studies which overlooked this process, we find that it is possible to obtain the correct relic abundance for dark matter masses in the range [1, 10] TeV even after taking into account the strong bounds from LHC Run II. We also consider the impact of the radion contribution (virtual exchange leading to SM final states as well as on-shell production), which does not significantly change our results. Quite interestingly, a sizeable part of the currently allowed parameter space could be tested by LHC Run III and by the High-Luminosity LHC.
Address (down) [Folgado, Miguel G.] Univ Valencia, CSIC, Dept Fis Teor, C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: migarfol@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000513955300002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4292
Permanent link to this record
 

 
Author Foffa, S.; Sturani, R.; Torres Bobadilla, W.J.
Title Efficient resummation of high post-Newtonian contributions to the binding energy Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 165 - 18pp
Keywords Classical Theories of Gravity; Black Holes; Effective Field Theories
Abstract A factorisation property of Feynman diagrams in the context the Effective Field Theory approach to the compact binary problem has been recently employed to efficiently determine the static sector of the potential at fifth post-Newtonian (5PN) order. We extend this procedure to the case of non-static diagrams and we use it to fix, by means of elementary algebraic manipulations, the value of more than one thousand diagrams at 5PN order, that is a substantial fraction of the diagrams needed to fully determine the dynamics at 5PN. This procedure addresses the redundancy problem that plagues the computation of the binding energy with respect to more “efficient” observables like the scattering angle, thus making the EFT approach in harmonic gauge at least as scalable as the others methods.
Address (down) [Foffa, Stefano] Univ Geneva, Dept Phys Theor, CH-1211 Geneva, Switzerland, Email: stefano.foffa@unige.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000621231300003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4740
Permanent link to this record
 

 
Author Flores-Tlalpa, A.; Lopez Castro, G.; Roig, P.
Title Five-body leptonic decays of muon and tau lepton Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 185 - 21pp
Keywords CP violation; Discrete Symmetries; Effective field theories; Precision QED
Abstract We study the five-body decays u(-) -> e(-)e(+)e(-)nu u (nu) over bar (e) and tau(-) -> l(-)l'+l'-nu(tau)(nu) over bar (l) for l, l' = e, u within the Standard Model (SM) and in a general effective field theory description of the weak interactions at low energies. We compute the branching ratios and compare our results with two previous – mutually discrepan – SM calculations. By assuming a general structure for the weak currents we derive the expressions for the energy and angular distributions of the three charged leptons when the decaying lepton is polarized, which will be useful in precise tests of the weak charged current at Belle II. In these decays, leptonic T-odd correlations in triple products of spin and momenta – which may signal time reversal violation in the leptonic sector – are suppressed by the tiny neutrino masses. Therefore, a measurement of such T-violating observables would be associated to neutrinoless lepton flavor violating (LFV) decays, where this effect is not extremely suppressed. We also study the backgrounds that the SM five-lepton lepton decays constitute to searches of LFV L- -> ? l(-)l'+l'(-) decays. Searches at high values of the invariant mass of the l'(+)l'(-) pair look the most convenient way to overcome the background.
Address (down) [Flores-Tlalpa, A.] Univ Nacl Autonoma Mexico, Inst Fis, Apartado Postal 20-364, Mexico City 01000, DF, Mexico, Email: alain@fisica.unam.mx;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000411265800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3501
Permanent link to this record
 

 
Author Fiza, N.; Khan Chowdhury, N.R.; Masud, M.
Title Investigating Lorentz Invariance Violation with the long baseline experiment P2O Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 076 - 29pp
Keywords Neutrino Mixing; Non-Standard Neutrino Properties
Abstract One of the basic propositions of quantum field theory is Lorentz invariance. The spontaneous breaking of Lorentz symmetry at a high energy scale can be studied at low energy extensions like the Standard model in a model-independent way through effective field theory (EFT). The present and future Long-baseline neutrino experiments can give a scope to observe such a Planck-suppressed physics of Lorentz invariance violation (LIV). A proposed long baseline experiment, Protvino to ORCA (dubbed “P2O”) with a baseline of 2595 km, is expected to provide good sensitivities to unresolved issues, especially neutrino mass ordering. P2O can offer good statistics even with a moderate beam power and runtime, owing to the very large (similar to 6 Mt) detector volume at KM3NeT/ ORCA. Here we discuss in detail, how the individual LIV parameters affect neutrino oscillations at P2O and DUNE baselines at the level of probability and derive analytical expressions to understand interesting degeneracies and other features. We estimate increment Delta chi(2) sensitivities to the LIV parameters, analyzing their correlations among each other, and also with the standard oscillation parameters. We calculate these results for P2O alone and also carry out a combined analysis of P2O with DUNE. We point out crucial features in the sensitivity contours and explain them qualitatively with the help of the relevant probability expressions derived here. Finally we estimate constraints on the individual LIV parameters at 95% confidence level (C.L.) intervals stemming from the combined analysis of P2O and DUNE datasets, and highlight the improvement over the existing constraints. We also find out that the additional degeneracy induced by the LIV parameter a(ee) around -22 x 10(-23) GeV is lifted by the combined analysis at 95% C.L.
Address (down) [Fiza, Nishat] IISER Mohali, Dept Phys Sci, Mohali 140306, Punjab, India, Email: ph15039@iisermohali.ac.in;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000918348700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5462
Permanent link to this record
 

 
Author Fischer, O.; Pattnaik, B.; Zurita, J.
Title Testing Heavy Neutral Leptons in Cosmic Ray Beam Dump experiments Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 193 - 24pp
Keywords Cosmic Rays; Sterile or Heavy Neutrinos; New Light Particles
Abstract In this work, we discuss the possibility to test Heavy Neutral Leptons (HNLs) using “Cosmic Ray Beam Dump” experiments. In analogy with terrestrial beam dump experiments, where a beam first hits a target and is then absorbed by a shield, we consider high-energy incident cosmic rays impinging on the Earth's atmosphere and then the Earth's surface. We focus here on HNL production from atmospherically produced kaon, pion and D-meson decays, and discuss the possible explanation of the appearing Cherenkov showers observed by the SHALON Cherenkov telescope and the ultra-high energy events detected by the neutrino experiment ANITA. We show that these observations can not be explained with a long-lived HNL, as the relevant parameter space is excluded by existing constraints. Then we propose two new experimental setups that are inspired by these experiments, namely a Cherenkov telescope pointing at a sub-horizontal angle and shielded by the mountain cliff at Mount Thor, and a geostationary satellite that observes part of the Sahara desert. We show that the Cherenkov telescope at Mount Thor can probe currently untested HNL parameter space for masses below the kaon mass. We also show that the geostationary satellite experiment can significantly increase the HNL parameter space coverage in the whole mass range from 10 MeV up to 2 GeV and test neutrino mixing |U-& alpha;4|(2) down to 10(-11) for masses around 300 MeV.
Address (down) [Fischer, Oliver] Univ Liverpool, Dept Math Sci, Liverpool L69 3BX, England, Email: Oliver.Fischer@liverpool.ac.uk;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001037689200008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5615
Permanent link to this record