|   | 
Details
   web
Records
Author Tetrault, M.A.; Oliver, J.F.; Bergeron, M.; Lecomte, R.; Fontaine, R.
Title Real Time Coincidence Detection Engine for High Count Rate Timestamp Based PET Type Journal Article
Year 2010 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 57 Issue 1 Pages 117-124
Keywords Coincidence detection; Positron Emission Tomography (PET)
Abstract Coincidence engines follow two main implementation flows: timestamp based systems and AND-gate based systems. The latter have been more widespread in recent years because of its lower cost and high efficiency. However, they are highly dependent on the selected electronic components, they have limited flexibility once assembled and they are customized to fit a specific scanner's geometry. Timestamp based systems are gathering more attention lately, especially with high channel count fully digital systems. These new systems must however cope with important singles count rates. One option is to record every detected event and postpone coincidence detection offline. For daily use systems, a real time engine is preferable because it dramatically reduces data volume and hence image preprocessing time and raw data management. This paper presents the timestamp based coincidence engine for the LabPET(TM), a small animal PET scanner with up to 4608 individual readout avalanche photodiode channels. The engine can handle up to 100 million single events per second and has extensive flexibility because it resides in programmable logic devices. It can be adapted for any detector geometry or channel count, can be ported to newer, faster programmable devices and can have extra modules added to take advantage of scanner-specific features. Finally, the user can select between full processing mode for imaging protocols and minimum processing mode to study different approaches for coincidence detection with offline software.
Address (up) [Tetrault, M. -A.; Fontaine, R.] Univ Sherbrooke, Dept Elect & Comp Engn, Sherbrooke, PQ J1K 2R1, Canada, Email: Marc-Andre.Tetrault@USherbrooke.ca
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes ISI:000274391000016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 500
Permanent link to this record
 

 
Author Torres-Espallardo, I.; Diblen, F.; Rohling, H.; Solevi, P.; Gillam, J.; Watts, D.; Espana, S.; Vandenberghe, S.; Fiedler, F.; Rafecas, M.
Title Evaluation of resistive-plate-chamber-based TOF-PET applied to in-beam particle therapy monitoring Type Journal Article
Year 2015 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 60 Issue 9 Pages N187-N208
Keywords PET; in-beam; RPC; particle therapy; TOF; range deviation; partial-ring
Abstract Particle therapy is a highly conformal radiotherapy technique which reduces the dose deposited to the surrounding normal tissues. In order to fully exploit its advantages, treatment monitoring is necessary to minimize uncertainties related to the dose delivery. Up to now, the only clinically feasible technique for the monitoring of therapeutic irradiation with particle beams is Positron Emission Tomography (PET). In this work we have compared a Resistive Plate Chamber (RPC)-based PET scanner with a scintillation-crystal-based PET scanner for this application. In general, the main advantages of the RPC-PET system are its excellent timing resolution, low cost, and the possibility of building large area systems. We simulated a partial-ring scannerbeam monitoring, which has an intrinsically low positron yield compared to diagnostic PET. In addition, for in-beam PET there is a further data loss due to the partial ring configuration. In order to improve the performance of the RPC-based scanner, an improved version of the RPC detector (modifying the thickness of the gas and glass layers), providing a larger sensitivity, has been simulated and compared with an axially extended version of the crystal-based device. The improved version of the RPC shows better performance than the prototype, but the extended version of the crystal-based PET outperforms all other options. based on an RPC prototype under construction within the Fondazione per Adroterapia Oncologica (TERA). For comparison with the crystal-based PET scanner we have chosen the geometry of a commercially available PET scanner, the Philips Gemini TF. The coincidence time resolution used in the simulations takes into account the current achievable values as well as expected improvements of both technologies. Several scenarios (including patient data) have been simulated to evaluate the performance of different scanners. Initial results have shown that the low sensitivity of the RPC hampers its application to hadron
Address (up) [Torres-Espallardo, I.; Solevi, P.; Gillam, J.; Rafecas, M.] UV, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: irene.torres@uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000354104700003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2227
Permanent link to this record
 

 
Author Viegas, R.; Roser, J.; Barrientos, L.; Borja-Lloret, M.; Casaña, J.V.; Lopez, J.G.; Jimenez-Ramos, M.C.; Hueso-Gonzalez, F.; Ros, A.; Llosa, G.
Title Characterization of a Compton camera based on the TOFPET2 ASIC Type Journal Article
Year 2023 Publication Radiation Physics and Chemistry Abbreviated Journal Radiat. Phys. Chem.
Volume 202 Issue Pages 110507 - 11pp
Keywords Compton camera; Hadron therapy; LaBr3; PETsys TOFPET2; Silicon photomultipliers
Abstract The use of Compton cameras for medical imaging and its interest as a hadron therapy treatment monitoring has increased in the last decade with the development of silicon photomultipliers. MACACOp is a Compton camera prototype designed and assembled at the IRIS group of IFIC-Valencia. This Compton camera is based on monolithic Lanthanum (III) Bromide crystals and silicon photomultipliers, and employs the novel TOFPET2 ASIC as readout electronics. This system emerged as an alternative to MACACO II prototype, with the aim of improving its limited time resolution. To test the performance of the ASIC in a Compton camera setup, the prototype was characterized, both in laboratory and in-beam. A time resolution of 1.5 ns was obtained after time corrections, which improves greatly the performance of the MACACO II. Moreover, the results obtained at high photon energies demonstrate the ability of the system to obtain 1 mm displacements of the reconstructed spots. The results reinforce the potential of the system as a monitoring device for hadron therapy.
Address (up) [Viegas, R.; Roser, J.; Barrientos, L.; Borja-Lloret, M.; Casana, J., V; Hueso-Gonzalez, F.; Ros, A.; Llosa, G.] CSIC UV, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: Rita.Viegas@ific.uv.es
Corporate Author Thesis
Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0969-806x ISBN Medium
Area Expedition Conference
Notes WOS:000870840600006 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5392
Permanent link to this record