|   | 
Details
   web
Records
Author Alvarez-Ortega, D.; Olmo, G.J.; Rubiera-Garcia, D.; Saez-Chillon Gomez, D.
Title Eternal versus singular observers in interacting dark-energy-dark-matter models Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 106 Issue 2 Pages 023523 - 14pp
Keywords
Abstract Interacting dark-energy-dark-matter models have been widely analyzed in the literature in an attempt to find traces of new physics beyond the usual cosmological (Lambda CDM) models. Such a coupling between both dark components is usually introduced in a phenomenological way through a flux in the continuity equation. However, models with a Lagrangian formulation are also possible. A class of the latter assumes a conformal/disformal coupling that leads to a fifth force on the dark-matter component, which consequently does not follow the same geodesics as the other (baryonic, radiation, and dark-energy) matter sources. Here we analyze how the usual cosmological singularities of the standard matter frame are seen from the dark-matter one, concluding that by choosing an appropriate coupling, dark-matter observers will see no singularities but a non beginning, non ending universe. By considering two simple phenomenological models we show that such a type of coupling can fit observational data as well as the usual Lambda CDM model.
Address (up) [Alvarez-Ortega, Diego] Inst Fis Cantabria CSIC UC, Avda Castros S-N, Santander 39005, Spain, Email: diego.alvarezo@alumnos.unican.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000842768300012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5345
Permanent link to this record
 

 
Author Alvarez-Ruso, L. et al; Nieves, J.
Title NuSTEC White Paper: Status and challenges of neutrino-nucleus scattering Type Journal Article
Year 2018 Publication Progress in Particle and Nuclear Physics Abbreviated Journal Prog. Part. Nucl. Phys.
Volume 100 Issue Pages 1-68
Keywords Neutrino; Nucleus; Scattering; Nuclear; Model; Oscillations
Abstract The precise measurement of neutrino properties is among the highest priorities in fundamental particle physics, involving many experiments worldwide. Since the experiments rely on the interactions of neutrinos with bound nucleons inside atomic nuclei, the planned advances in the scope and precision of these experiments require a commensurate effort in the understanding and modeling of the hadronic and nuclear physics of these interactions, which is incorporated as a nuclear model in neutrino event generators. This model is essential to every phase of experimental analyses and its theoretical uncertainties play an important role in interpreting every result. In this White Paper we discuss in detail the impact of neutrino-nucleus interactions, especially the nuclear effects, on the measurement of neutrino properties using the determination of oscillation parameters as a central example. After an Executive Summary and a concise Overview of the issues, we explain how the neutrino event generators work, what can be learned from electron-nucleus interactions and how each underlying physics process – from quasi-elastic to deep inelastic scattering – is understood today. We then emphasize how our understanding must improve to meet the demands of future experiments. With every topic we find that the challenges can be met only with the active support and collaboration among specialists in strong interactions and electroweak physics that include theorists and experimentalists from both the nuclear and high energy physics communities.
Address (up) [Alvarez-Ruso, L.; Nieves, J.] Univ Valencia, Ctr Mixto CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: morfin@fnal.gov
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0146-6410 ISBN Medium
Area Expedition Conference
Notes WOS:000430618800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3569
Permanent link to this record
 

 
Author Alvarez-Ruso, L.; Graczyk, K.M.; Saul-Sala, E.
Title Nucleon axial form factor from a Bayesian neural-network analysis of neutrino-scattering data Type Journal Article
Year 2019 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 99 Issue 2 Pages 025204 - 14pp
Keywords
Abstract The Bayesian approach for feedforward neural networks has been applied to the extraction of the nucleon axial form factor from the neutrino-deuteron-scattering data measured by the Argonne National Laboratory bubble-chamber experiment. This framework allows to perform a model-independent determination of the axial form factor from data. When the low 0.05 < Q(2) < 0.10-GeV2 data are included in the analysis, the resulting axial radius disagrees with available determinations. Furthermore, a large sensitivity to the corrections from the deuteron structure is obtained. In turn, when the low-Q(2) region is not taken into account with or without deuteron corrections, no significant deviations from previous determinations have been observed. A more accurate determination of the nucleon axial form factor requires new precise measurements of neutrino-induced quasielastic scattering on hydrogen and deuterium.
Address (up) [Alvarez-Ruso, Luis; Saul-Sala, Eduardo] Ctr Mixto UVEG CSIC, Dept Fis Teor, Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000459206200011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3915
Permanent link to this record
 

 
Author Alvarez-Ruso, L.; Saul-Sala, E.
Title Neutrino interactions with matter and the MiniBooNE anomaly Type Journal Article
Year 2021 Publication European Physical Journal-Special Topics Abbreviated Journal Eur. Phys. J.-Spec. Top.
Volume 230 Issue Pages 4373-4389
Keywords
Abstract The excess of electron-like events measured by MiniBooNE challenges our understanding of neutrinos and their interactions. We review the status of this open problem and ongoing efforts to resolve it. After introducing the experiment and its results, we consider the main experimental backgrounds and the related physics of neutrino interactions with matter, such as quasielastic-like scattering and weak pion production on nucleons and nuclei. Special attention is paid to single photon emission in neutral current interactions and, in particular, its coherent channel. The difficulties to reconcile the MiniBooNE anomaly with global oscillation analysis is then highlighted. We finally outline some of the proposed solutions of the puzzle involving unconventional neutrino-interaction mechanisms.
Address (up) [Alvarez-Ruso, Luis] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: Luis.Alvarez@ific.uv.es
Corporate Author Thesis
Publisher Springer Heidelberg Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1951-6355 ISBN Medium
Area Expedition Conference
Notes WOS:000709649400001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5007
Permanent link to this record
 

 
Author Alves, A.; Arcadi, G.; Dong, P.V.; Duarte, L.; Queiroz, F.S.; Valle, J.W.F.
Title Matter-parity as a residual gauge symmetry: Probing a theory of cosmological dark matter Type Journal Article
Year 2017 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 772 Issue Pages 825-831
Keywords
Abstract We discuss a non-supersymmetric scenario which addresses the origin of the matter-parity symmetry, P-M = (-1)(3(B-L)+2s), leading to a viable Dirac fermion dark matter candidate. Implications to electroweak precision, muon anomalous magnetic moment, flavor changing interactions, lepton flavor violation, dark matter and collider physics are discussed in detail. We show that this non-supersymmetric model is capable of generating the matter-parity symmetry in agreement with existing data with gripping implications to particle physics and cosmology.
Address (up) [Alves, Alexandre] Univ Fed Sao Paulo, Dept Fis, BR-09972270 Diadema, SP, Brazil, Email: queiroz@mpi-hd.mpg.de
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000411369700116 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3332
Permanent link to this record