|   | 
Details
   web
Records
Author Xiao, C.W.; Nieves, J.; Oset, E.
Title Heavy quark spin symmetric molecular states from (D)over-bar(()*())Sigma(()(c)*()) and other coupled channels in the light of the recent LHCb pentaquarks Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 1 Pages 014021 - 6pp
Keywords
Abstract We consider the (D) over bar (()*())Sigma(()(c)*()) states, together with J/psi N and other coupled channels, and take an interaction consistent with heavy quark spin symmetry, with the dynamical input obtained from an extension of the local hidden gauge approach. By fitting only one parameter to the recent three pentaquark states reported by the LHCb Collaboration, we can reproduce the three of them in base to the mass and the width, providing for them the quantum numbers and approximate molecular structure as 1/2(-) (D) over bar Sigma(c), 1/2(-) (D) over bar*Sigma(c), and 3/2(-) (D) over bar*Sigma(c), and the isospin I = 1/2. We find another state around 4374 MeV, of the 3/2(-) (D) over bar Sigma(c)* structure, for which indications appear in the experimental spectrum. Two other near degenerate states of a 1/2(-) (D) over bar*Sigma(c)* and 3/2(-) (D) over bar*Sigma(c)* nature are also found around 4520 MeV, which although less clear, are not incompatible with the observed spectrum. In addition, a 5/2(-) (D) over bar*Sigma(c)* state at the same energy appears, which however does not couple to J/psi p in an S wave, and hence, it is not expected to show up in the LHCb experiment.
Address (up) [Xiao, C. W.] Cent S Univ, Sch Phys & Elect, Changsha 410083, Hunan, Peoples R China
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000476694500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4086
Permanent link to this record
 

 
Author Xiao, C.W.; Nieves, J.; Oset, E.
Title Prediction of hidden charm strange molecular baryon states with heavy quark spin symmetry Type Journal Article
Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 799 Issue Pages 135051 - 10pp
Keywords
Abstract We have studied the meson-baryon S-wave interaction in the isoscalar hidden-charm strange sector with the coupled-channels, eta(c)Lambda, J/psi Lambda, (D) over bar Xi(c), (D) over bar (s)Lambda(c), (D) over bar Xi(c)', (D) over bar*Lambda(c), (D) over bar*Xi(c)', (D) over bar*Xi*(c) in J(p) = 1/2(-), J/psi Lambda, (D) over bar*Xi(c), (D) over bar (s)*Lambda(c), (D) over bar*Xi(c)', (D) over bar Xi(c)*, (D) over bar*Xi(c)* in 3/2(-) and (D) over bar*Xi(c)* in 5/2(-). We impose constraints of heavy quark spin symmetry in the interaction and obtain the non vanishing matrix elements from an extension of the local hidden gauge approach to the charm sector. The ultraviolet divergences are renormalized using the same meson-baryon-loops regulator previously employed in the non-strange hidden charm sector, where a good reproduction of the properties of the newly discovered pentaquark states is obtained. We obtain five states of 1/2(-), four of 3/2(-) and one of 5/2(-), which could be compared in the near future with forthcoming LHCb experiments. The 5/2(-), three of the 3/2(-) and another three of the 1/2(-) resonances are originated from isoscalar (D) over bar (()*())Xi(c)' and (D) over bar (()*()) Xi(c)* interactions. They should be located just few MeV below the corresponding thresholds (4446, 4513, 4588 and 4655 MeV), and would be SU(3)-siblings of the isospin 1/2 (D) over bar (()*())Sigma(()(c)*()) quasi-bound states previously found, and that provided a robust theoretical description of the P-c(4440), P-c(4457) and P-c(4312) LHCb exotic states. The another two 1/2(-) and 3/2(-) states obtained in this work are result of the (D) over bar (()*())Xi(c)- D-s(()*()) Lambda(c) coupled-channels isoscalar interaction, are significantly broader than the others, with widths of the order of 15 MeV, being (D) over bar (()(s)*())Lambda(c) the dominant decay channel.
Address (up) [Xiao, C. W.] Cent S Univ, Sch Phys & Elect, Changsha 410083, Hunan, Peoples R China, Email: jmnieves@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000500331400020 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4216
Permanent link to this record
 

 
Author Xiao, C.W.; Oset, E.
Title Hidden beauty baryon states in the local hidden gauge approach with heavy quark spin symmetry Type Journal Article
Year 2013 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 49 Issue 11 Pages 139 - 12pp
Keywords
Abstract Using a coupled-channel unitary approach, combining the heavy quark spin symmetry and the dynamics of the local hidden gauge, we investigate the meson-baryon interaction with hidden beauty and obtain several new states of N around 11 GeV. We consider the basis of states eta (b) N, I'N, BI > (b) , BI pound (b) , B (*) I > (b) , B (*) I pound (b) , B (*) I pound (b) (*) and find four basic bound states which correspond to BI pound (b) , BI pound (b) (*) , B (*) I pound (b) and B (*) I pound (b) (*) , decaying mostly into eta (b) N and I'N and with a binding energy about 50-130 MeV with respect to the thresholds of the corresponding channel. All of them have isospin I = 1/2 , and we find no bound states or resonances in I = 3/2 . The BI pound (b) state appears in J = 1/2 , the BI pound (b) (*) in J = 3/2 , the B (*) I pound (b) appears nearly degenerate in J = 1/2 , 3/2 and the B (*) I pound (b) (*) appears nearly degenerate in J = 1/2 , 3/2, 5/2. These states have a width from 2-110 MeV, with conservative estimates of uncertainties, except for the one in J = 5/2 which has zero width since it cannot decay into any of the states of the basis chosen. We make generous estimates of the uncertainties and find that within very large margins these states appear bound.
Address (up) [Xiao, C. W.] Univ Valencia, CSIC, Ctr Mixto, Inst Invest Paterna,Dept Fis Teor, Valencia 46071, Spain, Email: xiaochw@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:000326721300001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1647
Permanent link to this record
 

 
Author Xiao, C.W.; Bayar, M.; Oset, E.
Title NDK, (K)over-barDN, and ND(K)over-bar molecules Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 84 Issue 3 Pages 034037 - 8pp
Keywords
Abstract We investigate theoretically baryon systems made of three hadrons which contain one nucleon and one D meson, and in addition another meson, (D) over tilde, K, or (K) over tilde. The systems are studied using the fixed center approximation to the Faddeev equations. The study is made assuming scattering of a K or a (K) over tilde on a DN cluster, which is known to generate the Lambda(c)(2595), or the scattering of a nucleon on the D (D) over tilde cluster, which has been shown to generate a hidden charm resonance named X(3700). We also investigate the configuration of scattering of N on the KD cluster, which is known to generate the D*(s0)(2317). In all cases we find bound states, with the NDK system, of exotic nature, more bound than the (K) over tilde DN.
Address (up) [Xiao, CW; Bayar, M; Oset, E] Univ Valencia, Dept Fis Teor, Ctr Mixto, Valencia 46071, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000294135400007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 725
Permanent link to this record
 

 
Author Xie, J.J.; Chen, H.X.; Oset, E.
Title The pp -> p Lambda K(+) and pp -> p Sigma(0)K(+) reactions with chiral dynamics Type Journal Article
Year 2011 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 84 Issue 3 Pages 034004 - 8pp
Keywords
Abstract We report on a theoretical study of the pp -> p Lambda K(+) and pp -> p Sigma(0)K(+) reactions near threshold using a chiral dynamical approach. The production process is described by single-pion and single-kaon exchange. The final state interactions of nucleon-hyperon, K-hyperon, and K-nucleon systems are also taken into account. We show that our model leads to a fair description of the experimental data on the total cross section of the pp -> p Lambda K(+) and pp -> p Sigma(0)K(+) reactions. We find that the experimental observed strong suppression of Sigma(0) production compared to Lambda production at the same excess energy can be explained. However, ignorance of phases between some amplitudes does not allow one to properly account for the nucleon-hyperon final state interaction for the pp -> p Sigma(0)K(+) reaction. We also demonstrate that the invariant mass distribution and the Dalitz plot provide direct information about the Lambda and Sigma(0) production mechanisms and may be tested by experiments at COSY or HIRFL-CSR.
Address (up) [Xie, JJ; Chen, HX; Oset, E] Univ Valencia, Inst Fis Corpuscular IFIC, Ctr Mixto CSIC, Inst Invest Paterna, E-46071 Valencia, Spain, Email: xiejujun@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0556-2813 ISBN Medium
Area Expedition Conference
Notes WOS:000294925700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 757
Permanent link to this record