|   | 
Details
   web
Records
Author ANTARES Collaboration (Albert, A. et al); Carretero, V.; Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title ANTARES upper limits on the multi-TeV neutrino emission from the GRBs detected by IACTs Type Journal Article
Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 092 - 17pp
Keywords neutrino astronomy; ultra high energy photons and neutrinos; particle acceleration; gamma ray bursts theory
Abstract The first gamma-ray burst detections by Imaging Atmospheric Cherenkov Telescopes have been recently announced: GRB 190114C, detected by MAGIC, GRB 180720B and GRB 190829A, observed by H.E.S.S. A dedicated search for neutrinos in space and time coincidence with the gamma-ray emission observed by IACTs has been performed using ANTARES data. The search covers both the prompt and afterglow phases, yielding no neutrinos in coincidence with the three GRBs studied. Upper limits on the energetics of the neutrino emission are inferred. The resulting upper limits are several orders of magnitude above the observed gamma-ray emission, and they do not allow to constrain the available models.
Address (up) [Albert, A.; Drouhin, D.; Huanga, F.; James, C. W.; de Jong, M.; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000636717400087 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4781
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title Search for high-energy neutrinos from bright GRBs with ANTARES Type Journal Article
Year 2017 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 469 Issue 1 Pages 906-915
Keywords acceleration of particles; neutrinos; gamma-ray burst: individual: GRB 080916C; gamma-ray burst: individual: GRB 110918A; gamma-ray burst: individual: GRB 130427A; gamma-ray burst: individual: GRB 130505A
Abstract Gamma-ray bursts are thought to be sites of hadronic acceleration, thus neutrinos are expected from the decay of charged particles, produced in p gamma interactions. The methods and results of a search for muon neutrinos in the data of the ANTARES neutrino telescope from four bright GRBs (GRB 080916C, GRB 110918A, GRB 130427A and GRB 130505A) observed between 2008 and 2013 are presented. Two scenarios of the fireball model have been investigated: the internal shock scenario, leading to the production of neutrinos with energies mainly above 100 TeV, and the photospheric scenario, characterized by a low-energy component in neutrino spectra due to the assumption of neutrino production closer to the central engine. Since no neutrino events have been detected in temporal and spatial coincidence with these bursts, upper limits at 90 per cent confidence level on the expected neutrino fluxes are derived. The non-detection allows for directly constraining the bulk Lorentz factor of the jet Gamma and the baryon loading f(p).
Address (up) [Albert, A.; Drouhin, D.; Racca, C.] Univ Haute Alsace, GRPHE, Inst Univ Technol Colmar, 34 Rue Grillenbreit BP 50568, F-68008 Colmar, France, Email: silvia.celli@gssi.infn.it
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000402825000062 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3159
Permanent link to this record
 

 
Author ANTARES, IceCube, Pierre Auger, LIGO Sci and VIRGO Collaborations (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory Type Journal Article
Year 2017 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.
Volume 850 Issue 2 Pages L35 - 18pp
Keywords gamma-ray burst: general; gravitational waves; neutrinos
Abstract The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), indicating particle acceleration by the source. The precise location of the event was determined by optical detections of emission following the merger. We searched for high-energy neutrinos from the merger in the GeV-EeV energy range using the ANTARES, IceCube, and Pierre Auger Observatories. No neutrinos directionally coincident with the source were detected within +/- 500 s around the merger time. Additionally, no MeV neutrino burst signal was detected coincident with the merger. We further carried out an extended search in the direction of the source for high-energy neutrinos within the 14 day period following the merger, but found no evidence of emission. We used these results to probe dissipation mechanisms in relativistic outflows driven by the binary neutron star merger. The non-detection is consistent with model predictions of short GRBs observed at a large off-axis angle.
Address (up) [Albert, A.; Drouhin, D.; Racca, C.] Univ Haute Alsace, GRPHE, Inst Univ Technol Colmar, 34 Rue Grillenbreit BP, F-505686800 Colmar, France
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-8205 ISBN Medium
Area Expedition Conference
Notes WOS:000417541800010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3421
Permanent link to this record
 

 
Author ANTARES and IceCube Collaborations (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Colomer, M.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Lotze, M.; Zornoza, J.D.; Zuñiga, J.
Title Joint Constraints on Galactic Diffuse Neutrino Emission from the ANTARES and IceCube Neutrino Telescopes Type Journal Article
Year 2018 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.
Volume 868 Issue 2 Pages L20 - 7pp
Keywords cosmic rays; diffusion; Galaxy: disk; gamma rays: diffuse background; neutrinos
Abstract The existence of diffuse Galactic neutrino production is expected from cosmic-ray interactions with Galactic gas and radiation fields. Thus, neutrinos are a unique messenger offering the opportunity to test the products of Galactic cosmic-ray interactions up to energies of hundreds of TeV. Here we present a search for this production using ten years of Astronomy with a Neutrino Telescope and Abyss environmental RESearch (ANTARES) track and shower data, as well as seven years of IceCube track data. The data are combined into a joint likelihood test for neutrino emission according to the KRA(gamma) model assuming a 5 PeV per nucleon Galactic cosmic-ray cutoff. No significant excess is found. As a consequence, the limits presented in this Letter start constraining the model parameter space for Galactic cosmic-ray production and transport.
Address (up) [Albert, A.; Drouhin, D.; Ruiz, R. Gracia; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: antares.spokeperson@in2p3.fr;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-8205 ISBN Medium
Area Expedition Conference
Notes WOS:000450844500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3807
Permanent link to this record
 

 
Author HAWC Collaboration (Alfaro, R. et al); Salesa Greus, F.
Title Validation of standardized data formats and tools for ground-level particle-based gamma-ray observatories Type Journal Article
Year 2022 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.
Volume 667 Issue Pages A36 - 12pp
Keywords methods; data analysis; gamma rays; general
Abstract Context. Ground-based gamma-ray astronomy is still a rather young field of research, with strong historical connections to particle physics. This is why most observations are conducted by experiments with proprietary data and analysis software, as is usual in the particle physics field. However, in recent years, this paradigm has been slowly shifting toward the development and use of open-source data formats and tools, driven by upcoming observatories such as the Cherenkov Telescope Array (CTA). In this context, a community-driven, shared data format (the gamma-astro-data-format, or GADF) and analysis tools such as Gammapy and ctools have been developed. So far, these efforts have been led by the Imaging Atmospheric Cherenkov Telescope community, leaving out other types of ground-based gamma-ray instruments. Aims. We aim to show that the data from ground particle arrays, such as the High-Altitude Water Cherenkov (HAWC) observatory, are also compatible with the GADF and can thus be fully analyzed using the related tools, in this case, Gammapy. Methods. We reproduced several published HAWC results using Gammapy and data products compliant with GADF standard. We also illustrate the capabilities of the shared format and tools by producing a joint fit of the Crab spectrum including data from six different gamma-ray experiments. Results. We find excellent agreement with the reference results, a powerful confirmation of both the published results and the tools involved. Conclusions. The data from particle detector arrays such as the HAWC observatory can be adapted to the GADF and thus analyzed with Gammapy. A common data format and shared analysis tools allow multi-instrument joint analysis and effective data sharing. To emphasize this, a sample of Crab nebula event lists is made public with this paper. Because of the complementary nature of pointing and wide-field instruments, this synergy will be distinctly beneficial for the joint scientific exploitation of future observatories such as the Southern Wide-field Gamma-ray Observatory and CTA.
Address (up) [Albert, A.; Durocher, M.; Harding, J. P.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM USA, Email: laura.olivera-nieto@mpi-hd.mpg.de
Corporate Author Thesis
Publisher Edp Sciences S A Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6361 ISBN Medium
Area Expedition Conference
Notes WOS:000879223700008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5408
Permanent link to this record