LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2015). Search for long-lived particles decaying to jet pairs. Eur. Phys. J. C, 75(4), 152–12pp.
Abstract: A search is presented for long-lived particles with a mass between 25 and 50 GeV/c(2) and a lifetime between 1 and 200 ps in a sample of proton-proton collisions at a centre-of-mass energy of root s = 7 TeV, corresponding to an integrated luminosity of 0.62 fb(-1), collected by the LHCb detector. The particles are assumed to be pair-produced by the decay of a standard model-like Higgs boson. The experimental signature of the long-lived particle is a displaced vertex with two associated jets. No excess above the background is observed and limits are set on the production cross-section as a function of the long-lived particle mass and lifetime.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., & Ruiz Valls, P. (2014). Measurement of charged particle multiplicities and densities in pp collisions root s=7 TeV in the forward region. Eur. Phys. J. C, 74(5), 2888–17pp.
Abstract: Charged particle multiplicities are studied in proton-proton collisions in the forward region at a centre-of-mass energy of TeV with data collected by the LHCb detector. The forward spectrometer allows access to a kinematic range of in pseudorapidity, momenta greater than and transverse momenta greater than . The measurements are performed using events with at least one charged particle in the kinematic acceptance. The results are presented as functions of pseudorapidity and transverse momentum and are compared to predictions from several Monte Carlo event generators.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., & Ruiz Valls, P. (2014). Measurement of Upsilon production in collisions at root s=2.76 TeV. Eur. Phys. J. C, 74(4), 2835–11pp.
Abstract: The production of , and mesons decaying into the dimuon final state is studied with the LHCb detector using a data sample corresponding to an integrated luminosity of collected in proton-proton collisions at a centre-of-mass energy of TeV. The differential production cross-sections times dimuon branching fractions are measured as functions of the transverse momentum and rapidity, over the ranges GeV/ and . The total cross-sections in this kinematic region, assuming unpolarised production, are measured to be sigma (pp -> Upsilon(1S)X) x B(Upsilon(1S) -> mu(+)mu(-)) = 1.111 +/- 0.043 +/- 0.044 nb, sigma (pp -> Upsilon(2S)X) x B(Upsilon(2S) -> mu(+)mu(-)) = 0.264 +/- 0.023 +/- 0.011 nb, sigma (pp -> Upsilon(3S)X) x B(Upsilon(3S) -> mu(+)mu(-))s = 0.159 +/- 0.020 +/- 0.007 nb, where the first uncertainty is statistical and the second systematic.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2014). Measurement of psi (2S) polarisation in pp collisions at root s=7 TeV. Eur. Phys. J. C, 74(5), 2872–12pp.
Abstract: The polarisation of prompt mesons is measured by performing an angular analysis of decays using proton-proton collision data, corresponding to an integrated luminosity of 1.0, collected by the LHCb detector at a centre-of-mass energy of 7 TeV. The polarisation is measured in bins of transverse momentum and rapidity in the kinematic region and , and is compared to theoretical models. No significant polarisation is observed.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2016). A precise measurement of the B-0 meson oscillation frequency. Eur. Phys. J. C, 76(7), 412–14pp.
Abstract: The oscillation frequency, Delta m(d), of B-0 mesons is measured using semileptonic decays with a D- or D*(-) meson in the final state. The data sample corresponds to 3.0 fb(-1) of pp collisions, collected by the LHCb experiment at centre-of-mass energies root s = 7 and 8 TeV. A combination of the two decay modes gives Delta m(d) = (505.0 +/- 2.1 +/- 1.0) ns(-1), where the first uncertainty is statistical and the second is systematic. This is the most precise single measurement of this parameter. It is consistent with the current world average and has similar precision.
|