toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Di Valentino, E. et al; Mena, O. url  doi
openurl 
  Title Cosmology intertwined III: f sigma(8) and S-8 Type Journal Article
  Year 2021 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 131 Issue Pages 102604 - 6pp  
  Keywords cosmological tensions; cosmological parameters  
  Abstract The standard A Cold Dark Matter cosmological model provides a wonderful fit to current cosmological data, but a few statistically significant tensions and anomalies were found in the latest data analyses. While these anomalies could be due to the presence of systematic errors in the experiments, they could also indicate the need for new physics beyond the standard model. In this Letter of Interest we focus on the tension between Planck data and weak lensing measurements and redshift surveys, in the value of the matter energy density Omega(m), and the amplitude sigma(8) (or the growth rate f sigma(8)) of cosmic structure. We list a few promising models for solving this tension, and discuss the importance of trying to fit multiple cosmological datasets with complete physical models, rather than fitting individual datasets with a few handpicked theoretical parameters.  
  Address (down) [Di Valentino, Eleonora; Chluba, Jens; Harrison, Ian; Hart, Luke; Pace, Francesco] Univ Manchester, JBCA, Manchester, Lancs, England, Email: eleonora.di-valentino@durham.ac.uk  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000657813100006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4854  
Permanent link to this record
 

 
Author Di Valentino, E. et al; Mena, O. url  doi
openurl 
  Title Snowmass2021-Letter of interest cosmology intertwined IV: The age of the universe and its curvature Type Journal Article
  Year 2021 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 131 Issue Pages 102607 - 5pp  
  Keywords  
  Abstract A precise measurement of the curvature of the Universe is of prime importance for cosmology since it could not only confirm the paradigm of primordial inflation but also help in discriminating between different early-Universe scenarios. Recent observations, while broadly consistent with a spatially flat standard A Cold Dark Matter (ACDM) model, show tensions that still allow (and, in some cases, even suggest) a few percent deviations from a flat universe. In particular, the Planck Cosmic Microwave Background power spectra, assuming the nominal likelihood, prefer a closed universe at more than 99% confidence level. While new physics could be at play, this anomaly may be the result of an unresolved systematic error or just a statistical fluctuation. However, since positive curvature allows a larger age of the Universe, an accurate determination of the age of the oldest objects provides a smoking gun in confirming or falsifying the current flat ACDM model.  
  Address (down) [Di Valentino, Eleonora; Chluba, Jens; Harrison, Ian; Hart, Luke; Pace, Francesco] Univ Manchester, JBCA, Manchester, Lancs, England, Email: eleonora.di-valentino@durham.ac.uk  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000657813100007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4855  
Permanent link to this record
 

 
Author Di Valentino, E. et al; Mena, O. url  doi
openurl 
  Title Snowmass2021-Letter of interest cosmology intertwined I: Perspectives for the next decade Type Journal Article
  Year 2021 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 131 Issue Pages 102606 - 4pp  
  Keywords  
  Abstract The standard Lambda Cold Dark Matter cosmological model provides an amazing description of a wide range of astrophysical and astronomical data. However, there are a few big open questions, that make the standard model look like a first-order approximation to a more realistic scenario that still needs to be fully understood. In this Letter of Interest we will list a few important goals that need to be addressed in the next decade, also taking into account the current discordances present between the different cosmological probes, as the Hubble constant H-0 value, the sigma S-8(8) tension, and the anomalies present in the Planck results. Finally, we will give an overview of upgraded experiments and next-generation space-missions and facilities on Earth that will be of crucial importance to address all these questions.  
  Address (down) [Di Valentino, Eleonora; Chluba, Jens; Harrison, Ian; Hart, Luke; Pace, Francesco] Univ Manchester, JBCA, Manchester, Lancs, England, Email: eleonora.di-valentino@durham.ac.uk  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000657813100003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4856  
Permanent link to this record
 

 
Author Dev, A.; Machado, P.A.N.; Martinez-Mirave, P. url  doi
openurl 
  Title Signatures of ultralight dark matter in neutrino oscillation experiments Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue 1 Pages 094 - 23pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract We study how neutrino oscillations could probe the existence of ultralight bosonic dark matter. Three distinct signatures on neutrino oscillations are identified, depending on the mass of the dark matter and the specific experimental setup. These are time modulation signals, oscillation probability distortions due to fast modulations, and fast varying matter effects. We provide all the necessary information to perform a bottom-up, model-independent experimental analysis to probe such scenarios. Using the future DUNE experiment as an example, we estimate its sensitivity to ultralight scalar dark matter. Our results could be easily used by any other oscillation experiment.  
  Address (down) [Dev, Abhish] Univ Maryland, Maryland Ctr Fundamental Phys, Dept Phys, College Pk, MD 20742 USA, Email: adev@umd.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000640855200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4794  
Permanent link to this record
 

 
Author Desai, N.; Domingo, F.; Kim, J.S.; Ruiz de Austri, R.; Rolbiecki, K.; Sonawane, M.; Wang, Z.S. url  doi
openurl 
  Title Constraining electroweak and strongly charged long-lived particles with CheckMATE Type Journal Article
  Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 81 Issue 11 Pages 968 - 19pp  
  Keywords  
  Abstract Long-lived particles have become a new frontier in the exploration of physics beyond the Standard Model. In this paper, we present the implementation of four types of long-lived particle searches, viz. displaced leptons, disappearing track, displaced vertex with either muons or with missing transverse energy, and heavy charged tracks. These four categories cover the signatures of a large range of physics models. We illustrate their potential for exclusion and discuss their mutual overlaps in mass-lifetime space for two simple phenomenological models involving either a U(1)-charged or a coloured scalar.  
  Address (down) [Desai, Nishita] Tata Inst Fundamental Res, Dept Theoret Phys, Mumbai 400005, Maharashtra, India, Email: nishita.desai@tifr.res.in;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000714374500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5015  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva