|   | 
Details
   web
Records
Author Fonseca, R.M.; Hirsch, M.
Title Gauge vectors and double beta decay Type Journal Article
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 95 Issue 3 Pages 035033 - 14pp
Keywords
Abstract We discuss contributions to neutrinoless double beta (0 nu beta beta) decay involving vector bosons. The starting point is a list of all possible vector representations that may contribute to 0 nu beta beta decay via d = 9 or d = 11 operators at tree level. We then identify gauge groups which contain these vectors in the adjoint representation. Even though the complete list of vector fields that can contribute to 0 nu beta beta up to d = 11 is large (a total of 46 vectors), only a few of them can be gauge bosons of phenomenologically realistic groups. These latter cases are discussed in some more detail, and lower (upper) limits on gauge boson masses (mixing angles) are derived from the absence of 0 nu beta beta decay.
Address (up) [Fonseca, Renato M.; Hirsch, Martin] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,Calle Catedrat Jose Beltran, E-46980 Paterna, Valencia, Spain, Email: renato.fonseca@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000396024300010 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3012
Permanent link to this record
 

 
Author Fuster, J.; Irles, A.; Melini, D.; Uwer, P.; Vos, M.
Title Extracting the top-quark running mass using t$(t)over-bar-$+1-jet events produced at the Large Hadron Collider Type Journal Article
Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 77 Issue 11 Pages 794 - 9pp
Keywords
Abstract We present the calculation of the next-to-leading order QCD corrections for top-quark pair production in association with an additional jet at hadron colliders, using the modified minimal subtraction scheme to renormalize the top- quark mass. The results are compared to measurements at the Large Hadron Collider run I. In particular, we determine the top-quark running mass from a tit of the theoretical results presented here to the LHC data.
Address (up) [Fuster, J.; Melini, D.; Vos, M.] Univ Valencia, IFIC, Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: irles@lal.in2p3.fr
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000416366800004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3388
Permanent link to this record
 

 
Author Gambino, P.; Melis, A.; Simula, S.
Title Extraction of heavy-quark-expansion parameters from unquenched lattice data on pseudoscalar and vector heavy-light meson masses Type Journal Article
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 96 Issue 1 Pages 014511 - 17pp
Keywords
Abstract We present a precise lattice computation of pseudoscalar and vector heavy-light meson masses for heavy-quark masses ranging from the physical charm mass up to similar or equal to 4 times the physical b-quark mass. We employ the gauge configurations generated by the European Twisted Mass Collaboration (ETMC) with N-f = 2 + 1 + 1 dynamical quarks at three values of the lattice spacing (a similar or equal to 0.062; 0.082; 0.089 fm) with pion masses in the range M-pi similar or equal to 210-450 MeV. The heavy-quark mass is simulated directly on the lattice up to similar or equal to 3 times the physical charm mass. The interpolation to the physical b-quark mass is performed using the ETMC ratio method, based on ratios of the meson masses computed at nearby heavy-quark masses, and adopting the kinetic mass scheme. The extrapolation to the physical pion mass and to the continuum limit yields m(b)(kin) (1 GeV) = 4.61(20) GeV, which corresponds to (m) over bar (b) ((m) over bar (b)) 4.26(18) GeV in the (MS) over bar scheme. The lattice data are analyzed in terms of the heavy-quark expansion (HQE) and the matrix elements of dimension-four and dimension-five operators are extracted with a good precision, namely,(Lambda) over bar = 0.552(26) GeV, mu(2)(pi) = 0.321(32) GeV2, and mu(2)(G)(m(b)) = 0.253(25) GeV2. The data also allow for a rough estimate of the dimension-six operator matrix elements. As the HQE parameters play a crucial role in the inclusive determination of the Cabibbo-Kobayashi-Maskawa matrix elements V-ub and V-cb, their precise determination on the lattice may eventually validate and improve the analyses based on fits to the semileptonic moments.
Address (up) [Gambino, P.] Univ Turin, Dipartimento Fis, Via P Giuria 1, I-10125 Turin, Italy
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000406298500005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3224
Permanent link to this record
 

 
Author Garani, R.; Palomares-Ruiz, S.
Title Dark matter in the Sun: scattering off electrons vs nucleons Type Journal Article
Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 05 Issue 5 Pages 007 - 41pp
Keywords dark matter detectors; dark matter theory; neutrino detectors; stars
Abstract The annihilation of dark matter (DM) particles accumulated in the Sun could produce a flux of neutrinos, which is potentially detectable with neutrino detectors/telescopes and the DM elastic scattering cross section can be constrained. Although the process of DM capture in astrophysical objects like the Sun is commonly assumed to be due to interactions only with nucleons, there are scenarios in which tree-level DM couplings to quarks are absent, and even if loop-induced interactions with nucleons are allowed, scatterings off electrons could be the dominant capture mechanism. We consider this possibility and study in detail all the ingredients necessary to compute the neutrino production rates from DM annihilationsin the Sun (capture, annihilation and evaporation rates) for velocity-independent and isotropic, velocity-dependent and isotropic and momentum-dependent scattering cross sections for DM interactions with electrons and compare them with the results obtained for the case of interactions with nucleons. Moreover, we improve the usual calculations in a number of ways and provide analytical expressions in three appendices. Interestingly, we find that the evaporation mass in the case of interactions with electrons could be below the GeV range, depending on the high-velocity tail of the DM distribution in the Sun, which would open a new mass window for searching for this type of scenarios.
Address (up) [Garani, Raghuveer] Univ Bonn, Bethe Ctr Theoret Phys, Nussallee 12, D-53115 Bonn, Germany, Email: garani@th.physik.uni-bonn.de;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000402878200007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3175
Permanent link to this record
 

 
Author Garcia Canal, C.A.; Tarutina, T.; Vento, V.
Title Deuteron structure in the deep inelastic regime Type Journal Article
Year 2017 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 53 Issue 6 Pages 118 - 5pp
Keywords
Abstract We study nuclear effects in the deuteron in the deep inelastic regime using the newest available data. We put special emphasis on their Q(2) dependence. The study is carried out using a scheme which parameterizes, in a simple manner, these effects by changing the proton and neutron stucture functions in medium. The result of our analysis is compared with other recent proposals. We conclude that precise EMC ratios cannot be obtained without considering the nuclear effects in the deuteron.
Address (up) [Garcia Canal, C. A.; Tarutina, T.] Univ Nacl La Plata, IFLP CONICET, CC 67, RA-1900 La Plata, Buenos Aires, Argentina, Email: ttarutina@gmail.com
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:000402987800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3356
Permanent link to this record