|   | 
Details
   web
Records
Author Fuentes-Martin, J.; Ruiz-Femenia, P.; Vicente, A.; Virto, J.
Title DsixTools 2.0: the effective field theory toolkit Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 2 Pages 167 - 30pp
Keywords
Abstract DsixTools is a Mathematica package for the handling of the standard model effective field theory (SMEFT) and the low-energy effective field theory (LEFT) with operators up to dimension six, both at the algebraic and numerical level. DsixTools contains a visually accessible and operationally convenient repository of all operators and parameters of the SMEFT and the LEFT. This repository also provides information concerning symmetry categories and number of degrees of freedom, and routines that allow to implement this information on global expressions (such as decay amplitudes and cross-sections). DsixTools also performs weak basis transformations, and implements the full one-loop Renormalization Group Evolution in both EFTs (with SM beta functions up to five loops in QCD), and the full one-loop SMEFT-LEFT matching at the electroweak scale.
Address (down) [Fuentes-Martin, Javier] Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, D-55099 Mainz, Germany, Email: jvirto@ub.edu
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000620648200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4735
Permanent link to this record
 

 
Author Folgado, M.G.; Donini, A.; Rius, N.
Title Spin-dependence of gravity-mediated dark matter in warped extra-dimensions Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 3 Pages 197 - 13pp
Keywords
Abstract We study the possibility that Dark Matter (DM) particles of spin 0, 1/2 or 1 may interact gravitationally with Standard Model (SM) particles within the framework of a warped Randall-Sundrum (RS) model. Both the Dark Matter and the Standard Model particles are assumed to be confined to the infra-red (IR) brane and only interchange Kaluza-Klein excitations of the graviton and the radion (adopting the Goldberger-Wise mechanism to stabilize the size of the extra-dimension). We analyze the different DM annihilation channels and find that the presently observed Dark Matter relic abundance, Omega DM, can be obtained within the freeze-out mechanism for DM particles of all considered spins. This extends our first work concerning scalar DM in RS scenarios (Folgado et al., in JHEP 01:161. https://doi.org/10.1007/JHEP01(2020)161, 2020) and put it on equal footing with our second work in which we studied DM particles of spin 0, 1/2 and 1 in the framework of the Clockwork/Linear Dilaton (CW/LD) model (Folgado et al., in JHEP 20:036. https://doi.org/10.1007/JHEP04(2020)036, 2020). We study the region of the model parameter space for which Omega DM is achieved and compare it with the different experimental and theoretical bounds. We find that, for DM particles mass mDM is an element of [1,15] TeV, most of the parameter space is excluded by the current constraints or will be excluded by the LHC Run III or by the LHC upgrade, the HL-LHC. The observed DM relic abundance can still be achieved for DM masses mDM is an element of [4,15] TeV and mG1<10 TeV for scalar and vector boson Dark Matter. On the other hand, for spin 1/2 fermion Dark Matter, only a tiny region with mDM<is an element of>[4,15] TeV, mG1 is an element of [5,10] TeV and Lambda >mG1 is compatible with theoretical and experimental bounds. We have also studied the impact of the radion in the phenomenology, finding that it does not modify significantly the allowed region for DM particles of any spin (differently from the CW/LD case, where its impact was quite significant in the case of scalar DM). We, eventually, briefly compare results in RS with those obtained in the CW/LD model.
Address (down) [Folgado, Miguel G.] Univ Valencia, CSIC, Dept Fis Teor, C Catedratico Jose Beltran 2, Paterna 46980, Spain, Email: migarfol@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000625431000001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4767
Permanent link to this record
 

 
Author Fischer, O. et al; Pich, A.
Title Unveiling hidden physics at the LHC Type Journal Article
Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 82 Issue 8 Pages 665 - 58pp
Keywords
Abstract The field of particle physics is at the crossroads. The discovery of a Higgs-like boson completed the Standard Model (SM), but the lacking observation of convincing resonances Beyond the SM (BSM) offers no guidance for the future of particle physics. On the other hand, the motivation for New Physics has not diminished and is, in fact, reinforced by several striking anomalous results in many experiments. Here we summarise the status of the most significant anomalies, including the most recent results for the flavour anomalies, the multi-lepton anomalies at the LHC, the Higgs-like excess at around 96 GeV, and anomalies in neutrino physics, astrophysics, cosmology, and cosmic rays. While the LHC promises up to 4 ab(-1) of integrated luminosity and far-reaching physics programmes to unveil BSM physics, we consider the possibility that the latter could be tested with present data, but that systemic shortcomings of the experiments and their search strategies may preclude their discovery for several reasons, including: final states consisting in soft particles only, associated production processes, QCD-like final states, close-by SM resonances, and SUSY scenarios where no missing energy is produced. New search strategies could help to unveil the hidden BSM signatures, devised by making use of the CERN open data as a new testing ground. We discuss the CERN open data with its policies, challenges, and potential usefulness for the community. We showcase the example of the CMS collaboration, which is the only collaboration regularly releasing some of its data. We find it important to stress that individuals using public data for their own research does not imply competition with experimental efforts, but rather provides unique opportunities to give guidance for further BSM searches by the collaborations. Wide access to open data is paramount to fully exploit the LHCs potential.
Address (down) [Fischer, Oliver] Univ Liverpool, Dept Math Sci, Liverpool L69 7ZL, Merseyside, England, Email: oliver.fischer@liverpool.ac.uk
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000835701100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5322
Permanent link to this record
 

 
Author Fischer, M.; Kostrzewa, B.; Liu, L.M.; Romero-Lopez, F.; Ueding, M.; Urbach, C.
Title Scattering of two and three physical pions at maximal isospin from lattice QCD Extended Twisted Mass Collaboration Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 5 Pages 436 - 19pp
Keywords
Abstract We present the first direct N-f = 2 lattice QCD computation of two- and three-pi(+) scattering quantities that includes an ensemble at the physical point. We study the quark mass dependence of the two-pion phase shift, and the three-particle interaction parameters. We also compare to phenomenology and chiral perturbation theory (ChPT). In the two-particle sector, we observe good agreement to the phenomenological fits in s- and d-wave, and obtain M(pi)a(0) = -0.0481(86) at the physical point from a direct computation. In the three-particle sector, we observe reasonable agreement at threshold to the leading order chiral expansion, i.e. a mildly attractive three-particle contact term. In contrast, we observe that the energy-dependent part of the three-particle quasilocal scattering quantity is not well described by leading order ChPT.
Address (down) [Fischer, Matthias; Ueding, Martin; Urbach, Carsten] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany, Email: fernando.romero@uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000680425500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4900
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Bouchhar, N.; Cabrera Urban, S.; Cantero, J.; Cardillo, F.; Castillo Gimenez, V.; Chitishvili, M.; Costa, M.J.; Didenko,, M.; Escobar, C.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gomez Delegido, A.J.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Lacasta, C.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Munoz Perez, D.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rubio Jimenez, A.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Senthilkumar, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valiente Moreno, E.; Valls Ferrer, J.A.; Varriale, L.; Villaplana Perez, M.; Vos, M.
Title Luminosity determination in pp collisions at √s=13 TeV using the ATLAS detector at the LHC Type Journal Article
Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 83 Issue 10 Pages 982 - 67pp
Keywords
Abstract The luminosity determination for the ATLAS detector at the LHC during Run 2 is presented, with pp collisions at a centre-of-mass energy root s = 13TeV. The absolute luminosity scale is determined using van der Meer beam separation scans during dedicated running periods in each year, and extrapolated to the physics data-taking regime using complementary measurements from several luminosity-sensitive detectors. The total uncertainties in the integrated luminosity for each individual year of datataking range from 0.9% to 1.1%, and are partially correlated between years. After standard data-quality selections, the full Run 2 pp data sample corresponds to an integrated luminosity of 140.1 +/- 1.2fb(-1), i.e. an uncertainty of 0.83%. A dedicated sample of low-pileup data recorded in 2017-2018 for precision Standard Model physics measurements is analysed separately, and has an integrated luminosity of 338.1 +/- 3.1pb(-1).
Address (down) [Filmer, E. K.; Jackson, P.; Kong, A. X. Y.; Potti, H.; Ting, E. X. L.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001099632300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5899
Permanent link to this record